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Linear Combination

• Let V be a vector space. v ∈ V is a linear combination of vectors
x1, . . . ,xk ∈ V if

v = λ1x1 + . . . + λkxk =
k∑
i=1

λixi ∈ V

• Nontrivial linear combinations have at least one coe�icient λi , 0
– The 0-vector can be “trivially” represented as a linear combination

∑k
i=1 0xi .



Linear (In)dependence

• If there is at least one nontrivial linear combination of x1, . . . ,xk ∈ V such
that

∑k
i=1 λixi = 0, then x1, . . . ,xk are linearly dependent.

• Otherwise, when only the trivial solution exists, they are linearly independent.



Linear (In)dependence

• Linearly independent vectors have no “redundancy”
– If we remove any one of them, there will be certain vectors we can no longer

represent via linear combinations.

• Equivalently, can’t express any xi as a linear combination of the others.



Linear (In)dependence

Example: Consider three vectors a, b, and c where c = a + b.

x

y

a

b

c

These vectors are linearly dependent because a + b − c = 0.



Checking Linear Independence

Use Gaussian Elimination to check linear (in-)dependence:
• Construct a matrix by stacking the vectors as columns
• Reduce to row echelon form
• If every column has a leading “1,” linearly independent



Checking Linear Independence

Example:

x1 =


1
2
−3
4

 , x2 =


1
1
0
2

 , x3 =


−1
−2
1
1

 .
Transform the corresponding matrix to reduced row echelon form:

1 1 −1
2 1 −2
−3 0 1
4 2 1

 { · · · {

1 1 −1
0 1 0
0 0 1
0 0 0


Every column has a leading “1,” so the vectors are linearly independent.



Span and Basis

• The span of a set of vectors is the set of all their linear combinations.
• A set of vectors is a generating set for a vector space V if its span is V.
• A basis is a minimal generating set.



Basis Example

In R3, the canonical or standard basis is

B =



1
0
0

 ,

0
1
0

 ,

0
0
1


 .

Two other bases of R3 are

B1 =



1
0
0

 ,

1
1
0

 ,

1
1
1


 ,B2 =



0.5
0.8
0.4

 ,


1.8
0.3
−0.3

 ,

−2.2
−1.3
3.5






Basis Non-Example

The set

A =



1
2
3
4

 ,


2
−1
0
2

 ,


1
1
0
−4




is not a generating set (and so not a basis) of R4.



Remarks about Bases

• Every vector space possesses a basis, but there is no unique basis.
• All bases contain the same number of basis vectors.
• The dimension of V is the number of basis vectors of V: intuitively, the

dimension of a vector space can be thought of as the number of independent
directions in this vector space.
• The dimension of a vector space is not necessarily the number of elements in

a vector. For example,

V = span
( [
1.0
0.5

] )
is one-dimensional.



Finding a Basis

Use Gaussian Elimination to find a basis for the vector space spanned by x1 . . .xm:

• Construct a matrix by stacking the vectors as columns
• Reduce to row echelon form
• Take every column with a leading “1”



Finding Basis: Example

Consider a subspace U of R5 spanned by the vectors

x1 =


1
2
−1
−1
−1


, x2 =


2
−1
1
2
−2


, x3 =


3
−4
3
5
−3


, x4 =


−1
8
−5
−6
1


To find which of the vectors are a basis for U. . .



Finding Basis: Example

Write down matrix and reduce:
1 2 3 −1
2 −1 −4 8
−1 1 3 −5
−1 2 5 −6
−1 −2 −3 1


{ · · · {


1 2 3 −1
0 1 2 −2
0 0 0 1
0 0 0 0
0 0 0 0


Pivot columns (with leading ones) indicate linearly independent vectors, so
x1, x2, and x4 form a basis for U.



Rank

• The rank of a matrix is the number of linearly independently rows
(= the number of linearly independent columns)
• Example: The matrix

A =


1 0 1
0 1 1
0 0 0

 ,
has rk(A) = 2, because A has two linearly independent columns / rows.



Properties of Rank

• rk(A) = rk(A>)
• The columns of A ∈ Rm×n span a subspace U ⊆ Rm with dim(U) = rk(A)
• The rows of A ∈ Rm×n span a subspaceW ⊆ Rn with dim(W) = rk(A).
• For all A ∈ Rn×n, A is invertible i� rk(A) = n



Properties of Rank, cont.

• For A ∈ Rm×n, the subspace of solutions to Ax = 0 has dimension n − rk(A).
This is called the kernel or null space of A.
• A matrix A ∈ Rm×n has full rank if its rank equals the largest possible rank

for a matrix of the same dimensions. In other words, the rank of a full rank
matrix is rk(A) = min(m,n).
• A matrix is said to be rank deficient if it does not have full rank.
• A square matrix is singular if it does not have an inverse or, equivalently,

is rank deficient.


