Brief Intro to Numerical Analysis

Szymon Rusinkiewicz
COS 302, Fall 2020

{ 3 PRINCETON
UNIVERSITY

Numerical Analysis

Algorithms for solving numerical problems

— Calculus, algebra, data analysis, etc.

— Used even if answer is not simple/elegant: “math in the real world”
Analyze/design algorithms based on:

— Running time, memory usage (both asymptotic and constant factors)

— Applicability, stability, and accuracy

Why Is This Hard / Interesting?

Problems might not have an ideal solution (independent of algorithm)
Algorithms might give wrong answer (even with perfect real numbers)
— Iterative, randomized, approximate

“Numbers” in computers = numbers in math

— Limited precision and range

Tradeoffs in accuracy, stability, and running time

Catalog of Errors

in data or model
— “Qarbage in, garbage out”
— Problem is ill-posed or ill-conditioned
in algorithm
— Discretization error — e.g., too-big steps for derivative
— Truncation error — e.g., too few terms of Taylor series
— Convergence error — stopping iteration too early

— Statistical error — too few random samples

due to floating-point “numbers”

Catalog of Errors

in data or model

— “Qarbage in, garbage out”

— Problem is ill-posed or ill-conditioned

Well-Posedness and Sensitivity

Problem is if solution

— exists

— IS unique

— depends continuously on problem data

Otherwise, problem is

Solution may still be sensitive to input data

— : relative change in solution much larger than that in input data

Sensitivity & Conditioning

Some problems propagate error in bad ways

— e.g., y = tan(x) sensitive to small changes in x near /2
Small error in input — huge error in solution: ill-conditioned

Well-conditioned problems may have ill-conditioned inverses,
and vice versa

— e.g., y = atan(x)

Catalog of Errors

in algorithm
— Discretization error — e.g., too-big steps for derivative
— Truncation error — e.g., too few terms of Taylor series
— Convergence error — stopping iteration too early

— Statistical error — too few random samples

Catalog of Errors

due to floating-point “numbers”

Numbers in Computers

“Integers”
— Mostly sane, except for limited range
Floating point

— Most common approximation to real numbers (alternatives: fixed point, rational)

— Much larger range
(e.g. —231... 231 for 32-bit integers, vs. —2127... 2127 for 32-bit floating point)

— Lower precision (e.g. 7 digits vs. 9)

— Relative precision: actual accuracy depends on size

Floating Point Numbers

Like scientific notation: e.g., c is
2.99792458 x 108 m/s

This has the form
(multiplier) x (power)
In the computer,

— Multiplier is called mantissa
— is almost always 2

— Power is called exponent

IEEE Floating Point Representation (ISO/IEEE 754 Standard)

Using 32 bits Using 64 bits
— Type float in C/ Java, — Type double in C/ Java,
float in plain Python,
np.single or np.float32 in NumPy np.double or np.float64 in NumPy
— 1 bit: sign — 1 bit: sign
(0 = positive, T = negative) (0 = positive, T = negative)
— 8 bits: exponent + 127 — 11 bits: exponent + 1023
— 23 bits: binary fraction of the form — 52 bits: binary fraction of the form
1.bbbbbbbbbbbbbbbbbbbbbbb 1.bbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbbbbb

Floating Point Example

Sign (1 bit):

— 1 = negative

Exponent (8 bits):

—~ 10000011, = 131

— 131 — 127 = 4

Mantissa (23 bits):

—1.101101100000000000000004

-1+ (1*2°1)+(0*22)+(1*23)+(1*27)+(0*2>)+(1*2°°)+(1*2°") =
1.7109375

Number:

— =1.7109375 * 24 = -27.375

11000001110110110000000000000000

32-bit representation

13

Floating Point Consequences

“Machine epsilon”: smallest positive number you can add to 1.0
and get something other than 1.0

For 32-bit: ¢ = 1077
— No such number as 1.000000001

— “almost 7 digits of precision”
For double: ¢ =2 x 10710
— “not quite 16 digits of precision”

These are all relative numbers

Floating Point Consequences, cont.

Decimal Rational

Just as decimal number system can represent only Approx Value
. -3 3710
certain rational numbers with finite digit count... .33 33/100

-333 33371000

— Example: 1/3 cannot be represented

. Binary Rational
Binary number system can represent only Approx Value
0.0 0/2
certain rational numbers with finite digit count 0-01 L
0.0011 3716
— Example: 1/5 cannot be represented 0.00110 6/32
0.001101 13/64
0.0011010 26/128
Beware of roundoff error oo ioon el

— Error resulting from inexact representation

— Can accumulate

So What?

Simple example: add '/,

to itself 10 times

sum =
for 1
1T su

else:

0.0

iIn range(10):
sum += 0.1
m 1.0:
print(""All

1Is well')

print(""Yikes!')

So What?

Simple example: add '/,

to itself 10 times

sum =
for 1
1T su

else:

0.0

iIn range(10):
sum += 0.1
m 1.0:
print(""All

1Is well')

print(""Yikes!')

Yikes!

Result: /o + Vg + ... # 1

Reason: 0.1 can’t be represented exactly in binary floating point

— Like /5 in decimal

comparing floating point numbers for equality
is “always” wrong

More Subtle Problem

Using quadratic formula

—b + Vb2 — 4ac
x —
2a

to solve x> —9999x + 1 =0

— Only 4 digits: single precision should be OK, right?
Correct answers: 0.0001... and 9998.999...
Actual answers in single precision: 0 and 9999

— First answer is 100% off!

— Total cancellation in numerator because b? > —4ac

Catalog of Errors

in data or model
— “Qarbage in, garbage out”
— Problem is ill-posed or ill-conditioned
in algorithm
— Discretization error — e.g., too-big steps for derivative
— Truncation error — e.g., too few terms of Taylor series
— Convergence error — stopping iteration too early

— Statistical error — too few random samples

due to floating-point “numbers”

Error Tradeoff Example — Computing Derivative

[l) = f()

f' () -

.| total error

error
S

107® 107" 107" 107° 10°® 10° 10 10° 10°

step size [Heath]

	Brief Intro to Numerical Analysis
	Numerical Analysis
	Why Is This Hard / Interesting?
	Catalog of Errors
	Catalog of Errors
	Well-Posedness and Sensitivity
	Sensitivity & Conditioning
	Catalog of Errors
	Catalog of Errors
	Numbers in Computers
	Floating Point Numbers
	IEEE Floating Point Representation (ISO/IEEE 754 Standard)
	Floating Point Example
	Floating Point Consequences
	Floating Point Consequences, cont.
	So What?
	So What?
	Yikes!
	More Subtle Problem
	Catalog of Errors
	Error Tradeoff Example – Computing Derivative

