Brief Intro to Numerical Analysis

Szymon Rusinkiewicz COS 302, Fall 2020

Numerical Analysis

- Algorithms for solving numerical problems
 - Calculus, algebra, data analysis, etc.
 - Used even if answer is not simple/elegant: "math in the real world"
- Analyze/design algorithms based on:
 - Running time, memory usage (both asymptotic and constant factors)
 - Applicability, stability, and accuracy

Why Is This Hard / Interesting?

- Problems might not have an ideal solution (independent of algorithm)
- Algorithms might give wrong answer (even with perfect real numbers)
 - Iterative, randomized, approximate
- "Numbers" in computers ≠ numbers in math
 - Limited precision and range
- Tradeoffs in accuracy, stability, and running time

Inherent error in data or model

- "Garbage in, garbage out"
- Problem is ill-posed or ill-conditioned
- Approximation errors in algorithm
 - Discretization error e.g., too-big steps for derivative
 - Truncation error e.g., too few terms of Taylor series
 - Convergence error stopping iteration too early
 - Statistical error too few random samples
- Roundoff error due to floating-point "numbers"

Inherent error in data or model

- "Garbage in, garbage out"
- Problem is ill-posed or ill-conditioned
- Approximation errors in algorithm
 - Discretization error e.g., too-big steps for derivative
 - Truncation error e.g., too few terms of Taylor series
 - Convergence error stopping iteration too early
 - Statistical error too few random samples
- Roundoff error due to floating-point "numbers"

Well-Posedness and Sensitivity

• Problem is well-posed if solution

- exists
- is unique
- depends continuously on problem data
- Otherwise, problem is ill-posed
- Solution may still be sensitive to input data
 - Ill-conditioned: relative change in solution much larger than that in input data

Sensitivity & Conditioning

- Some problems propagate error in bad ways
 - e.g., y = tan(x) sensitive to small changes in x near $\pi/2$
- Small error in input \rightarrow huge error in solution: ill-conditioned
- Well-conditioned problems may have ill-conditioned inverses, and vice versa
 - e.g., y = atan(x)

• Inherent error in data or model

- "Garbage in, garbage out"
- Problem is ill-posed or ill-conditioned
- Approximation errors in algorithm
 - Discretization error e.g., too-big steps for derivative
 - Truncation error e.g., too few terms of Taylor series
 - Convergence error stopping iteration too early
 - Statistical error too few random samples
- Roundoff error due to floating-point "numbers"

• Inherent error in data or model

- "Garbage in, garbage out"
- Problem is ill-posed or ill-conditioned
- Approximation errors in algorithm
 - Discretization error e.g., too-big steps for derivative
 - Truncation error e.g., too few terms of Taylor series
 - Convergence error stopping iteration too early
 - Statistical error too few random samples
- Roundoff error due to floating-point "numbers"

Numbers in Computers

- "Integers"
 - Mostly sane, except for limited range
- Floating point
 - Most common approximation to real numbers (alternatives: fixed point, rational)
 - Much larger range
 (e.g. -2³¹... 2³¹ for 32-bit integers, vs. -2¹²⁷... 2¹²⁷ for 32-bit floating point)
 - Lower precision (e.g. 7 digits vs. 9)
 - *Relative* precision: actual accuracy depends on size

Floating Point Numbers

- Like scientific notation: e.g., c is 2.99792458×10^8 m/s
- This has the form

(multiplier) × (base)^(power)

- In the computer,
 - Multiplier is called mantissa
 - Base is almost always 2
 - Power is called exponent

IEEE Floating Point Representation (ISO/IEEE 754 Standard)

- Using 32 bits
 - Type float in C / Java,
 - np.single or np.float32 in NumPy
 - 1 bit: sign (0 \Rightarrow positive, 1 \Rightarrow negative)
 - 8 bits: exponent + 127

• Using 64 bits

- Type double in C / Java,
 float in plain Python,
 np.double or np.float64 in NumPy
- 1 bit: sign (0 ⇒ positive, 1 ⇒ negative)
- 11 bits: exponent + 1023

Floating Point Example

- Sign (1 bit):
 - $-1 \Rightarrow$ negative
- Exponent (8 bits):
 - $-1000011_{B} = 131$
 - -131 127 = 4
- Mantissa (23 bits):

 - $-1 + (1^{2^{-1}}) + (0^{2^{-2}}) + (1^{2^{-3}}) + (1^{2^{-4}}) + (0^{2^{-5}}) + (1^{2^{-6}}) + (1^{2^{-7}}) = 1.7109375$
- Number:

 $--1.7109375 \times 2^4 = -27.375$

32-bit representation

Floating Point Consequences

- "Machine epsilon": smallest positive number you can add to 1.0 and get something other than 1.0
- For 32-bit: $\varepsilon \approx 10^{-7}$
 - No such number as 1.00000001
 - Rule of thumb: "almost 7 digits of precision"
- For double: $\varepsilon \approx 2 \times 10^{-16}$
 - Rule of thumb: "not quite 16 digits of precision"
- These are all *relative* numbers

Floating Point Consequences, cont.

- Just as decimal number system can represent only certain rational numbers with finite digit count...
 - Example: 1/3 cannot be represented
- Binary number system can represent only certain rational numbers with finite digit count
 - Example: 1/5 cannot be represented
- Beware of roundoff error
 - Error resulting from inexact representation
 - Can accumulate

<u>Decimal</u>	<u>Rational</u>
Approx	Value
.3	3/10
.33	33/100
.333	333/1000
•••	

Binary	Rational
<u>Approx</u>	<u>Value</u>
0.0	0/2
0.01	1/4
0.010	2/8
0.0011	3/16
0.00110	6/32
0.001101	13/64
0.0011010	26/128
0.00110011	. 51/256
• • •	

• Simple example: add $\frac{1}{10}$ to itself 10 times

```
sum = 0.0
for i in range(10):
    sum += 0.1
if sum == 1.0:
    print("All is well")
else:
    print("Yikes!")
```


• Simple example: add $\frac{1}{10}$ to itself 10 times

```
sum = 0.0
for i in range(10):
    sum += 0.1
if sum == 1.0:
    print("All is well")
else:
    print("Yikes!")
```

Yikes!

Yikes!

- Result: $\frac{1}{10} + \frac{1}{10} + \dots \neq 1$
- Reason: 0.1 can't be represented exactly in binary floating point Like $\frac{1}{3}$ in decimal

• Rule of thumb: comparing floating point numbers for equality is "always" wrong

More Subtle Problem

• Using quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

to solve $x^2 - 9999x + 1 = 0$

- Only 4 digits: single precision should be OK, right?
- Correct answers: 0.0001... and 9998.999...
- Actual answers in single precision: 0 and 9999
 - First answer is 100% off!
 - Total cancellation in numerator because $b^2 \gg -4ac$

Inherent error in data or model

- "Garbage in, garbage out"
- Problem is ill-posed or ill-conditioned
- Approximation errors in algorithm
 - Discretization error e.g., too-big steps for derivative
 - Truncation error e.g., too few terms of Taylor series
 - Convergence error stopping iteration too early
 - Statistical error too few random samples
- Roundoff error due to floating-point "numbers"

Error Tradeoff Example – Computing Derivative

[Heath]