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Brief Intro to Numerical Analysis



Numerical Analysis

• Algorithms for solving numerical problems
– Calculus, algebra, data analysis, etc.

– Used even if answer is not simple/elegant: “math in the real world”

• Analyze/design algorithms based on:
– Running time, memory usage (both asymptotic and constant factors)

– Applicability, stability, and accuracy



Why Is This Hard / Interesting?

• Problems might not have an ideal solution (independent of algorithm)

• Algorithms might give wrong answer (even with perfect real numbers)
– Iterative, randomized, approximate

• “Numbers” in computers ≠ numbers in math
– Limited precision and range

• Tradeoffs in accuracy, stability, and running time



Catalog of Errors

• Inherent error in data or model
– “Garbage in, garbage out”

– Problem is ill-posed or ill-conditioned

• Approximation errors in algorithm
– Discretization error – e.g., too-big steps for derivative

– Truncation error – e.g., too few terms of Taylor series

– Convergence error – stopping iteration too early

– Statistical error – too few random samples

• Roundoff error due to floating-point “numbers”
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Well-Posedness and Sensitivity

• Problem is well-posed if solution
– exists

– is unique

– depends continuously on problem data

Otherwise, problem is ill-posed

• Solution may still be sensitive to input data
– Ill-conditioned: relative change in solution much larger than that in input data



Sensitivity & Conditioning

• Some problems propagate error in bad ways
– e.g., y = tan(x) sensitive to small changes in x near π/2

• Small error in input → huge error in solution: ill-conditioned

• Well-conditioned problems may have ill-conditioned inverses,
and vice versa
– e.g., y = atan(x)
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Numbers in Computers

• “Integers”
– Mostly sane, except for limited range

• Floating point
– Most common approximation to real numbers (alternatives: fixed point, rational)

– Much larger range
(e.g. −231... 231 for 32-bit integers, vs. −2127... 2127 for 32-bit floating point)

– Lower precision (e.g. 7 digits vs. 9)

– Relative precision: actual accuracy depends on size



Floating Point Numbers

• Like scientific notation: e.g., c is
2.99792458 × 108 m/s

• This has the form
(multiplier) × (base)(power)

• In the computer,
– Multiplier is called mantissa

– Base is almost always 2

– Power is called exponent



• Using 32 bits
– Type float in C / Java,

np.single or np.float32 in NumPy

– 1 bit: sign
(0 ⇒ positive, 1 ⇒ negative)

– 8 bits: exponent + 127

– 23 bits: binary fraction of the form 
1.bbbbbbbbbbbbbbbbbbbbbbb

• Using 64 bits
– Type double in C / Java,
float in plain Python,
np.double or np.float64 in NumPy

– 1 bit: sign
(0 ⇒ positive, 1 ⇒ negative)

– 11 bits: exponent + 1023

– 52 bits: binary fraction of the form 
1.bbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbb

IEEE Floating Point Representation (ISO/IEEE 754 Standard)



Floating Point Example

• Sign (1 bit):
– 1 ⇒ negative

• Exponent (8 bits): 
– 10000011B = 131
– 131 – 127 = 4

• Mantissa (23 bits):
– 1.10110110000000000000000B
– 1 + (1*2-1)+(0*2-2)+(1*2-3)+(1*2-4)+(0*2-5)+(1*2-6)+(1*2-7) = 
1.7109375

• Number:
– -1.7109375 * 24 = -27.375

13

11000001110110110000000000000000

32-bit representation



Floating Point Consequences

• “Machine epsilon”: smallest positive number you can add to 1.0
and get something other than 1.0

• For 32-bit: ε ≈ 10−7

– No such number as 1.000000001

– Rule of thumb: “almost 7 digits of precision”

• For double: ε ≈ 2 × 10−16

– Rule of thumb: “not quite 16 digits of precision”

• These are all relative numbers



Floating Point Consequences, cont.

• Just as decimal number system can represent only
certain rational numbers with finite digit count…
– Example: 1/3 cannot be represented

• Binary number system can represent only
certain rational numbers with finite digit count
– Example: 1/5 cannot be represented

• Beware of roundoff error
– Error resulting from inexact representation

– Can accumulate

Decimal Rational
Approx Value
.3       3/10
.33      33/100
.333     333/1000
...

Binary Rational
Approx Value
0.0        0/2
0.01       1/4
0.010      2/8
0.0011     3/16
0.00110    6/32
0.001101   13/64
0.0011010  26/128
0.00110011 51/256
...



So What?

• Simple example: add 1/10 to itself 10 times

sum = 0.0
for i in range(10):

sum += 0.1
if sum == 1.0:

print("All is well")
else:

print("Yikes!")
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Yikes!

• Result: 1/10 + 1/10 + …  ≠ 1

• Reason: 0.1 can’t be represented exactly in binary floating point
– Like 1/3 in decimal

• Rule of thumb: comparing floating point numbers for equality
is “always” wrong



More Subtle Problem

• Using quadratic formula

to solve 𝑥𝑥2 − 9999𝑥𝑥 + 1 = 0
– Only 4 digits: single precision should be OK, right?

• Correct answers: 0.0001…  and 9998.999…

• Actual answers in single precision: 0 and 9999
– First answer is 100% off!

– Total cancellation in numerator because 𝑏𝑏2 ≫ −4𝑎𝑎𝑎𝑎

𝑥𝑥 =
−𝑏𝑏 ± 𝑏𝑏2 − 4𝑎𝑎𝑎𝑎

2𝑎𝑎
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Error Tradeoff Example – Computing Derivative

[Heath]

𝑓𝑓′ 𝑥𝑥 ≈
𝑓𝑓 𝑥𝑥 + ℎ − 𝑓𝑓 𝑥𝑥

ℎ

total error
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