
Linear Systems

Szymon Rusinkiewicz
COS 302, Fall 2020



Linear Systems

• Simultaneously satisfy a set of linear equations
• In 2D, a linear equation in 2 variables defines a line

– 2 equations might intersect in 1 point, giving a unique solution



Linear Systems

• Simultaneously satisfy a set of linear equations
• In 3D, a linear equation in 3 variables defines a plane

– 3 equations might intersect in 1 point, giving a unique solution



Applications of Linear Systems

• Regression (“fi�ing a model to data”)
• Simulation (e.g., mass-spring systems)
• Analysis (e.g., how much stress is there in a beam in a building or bridge)
• Subroutine in other numerical algorithms (e.g., Newton’s method for

optimization or implicit Euler method for di�erential equations)



Linear Systems

a11x1 + a12x2 + a13x3 + · · · = b1

a21x1 + a22x2 + a23x3 + · · · = b2

a31x1 + a32x2 + a33x3 + · · · = b3
...


a11 a12 a13 · · ·
a21 a22 a23 · · ·
a31 a32 a33 · · ·
...

...
...
. . .



x1
x2
x3
...


=


b1
b2
b3
...





Linear Systems

• Solve Ax = b, where A is an n × n matrix and b is an n × 1 column vector

• Can also talk about non-square systems where A ism × n, b ism × 1, and
x is n × 1

– Usually overdetermined ifm > n: “more constraints than unknowns”
(Can look for “best” solution using least squares.)

– Underdetermined if n > m: “more unknowns than constraints”
(Can compute all solutions, as in textbook, but it is more common
to look for “best” solution using regularization.)



Singular Systems

• A square matrix A is singular if some row is linear combination of other rows
• Singular systems might have infinitely many solutions:

2x1 + 3x2 = 5
4x1 + 6x2 = 10

or no solutions:

2x1 + 3x2 = 5
4x1 + 6x2 = 11



Singular Systems

Singular with infinite solutions

Singular with no solutions



Near-Singular Systems

Near-singular or ill-conditioned:
noise in inputs, or roundo� error
in computation, may result in large
changes to solution



Solving Linear Systems

• Seemingly the most direct way to solve a well-determined, square system is
to use the matrix inverse:

Ax = b

A−1Ax = A−1b

x = A−1b

Notes:
1. The inverse of a square matrix need not exist.

But if it does, it is unique and has the property AA−1 = A−1A = I .
2. Matrix multiplication is associative, so A−1(Ax) = (A−1A)x = Ix = x .
3. Matrix multiplication is not commutative, so we were careful to

multiply both Ax and b on the le� by A−1.



Inverses and Linear Systems

• In fact, using x = A−1b, and computing the inverse, is usually a bad idea:
– Ine�icient
– Prone to roundo� error

• Linear solver algorithms

– Direct: nested loops over matrix, get solution at end
– Iterative: get approximate answer, then each iteration improves it

• In fact compute inverse using linear solver

– Solve Ax i = bi , where bi are columns of identity, x i are columns of inverse
– Many solvers can solve several Right Hand Sides (RHS) at once



Gauss-Jordan or Gaussian Elimination

• Simple-to-understand direct solver (though not used in practice)
• Transforms matrix to reduced row-echelon form∗, while simultaneously

manipulating one or more right-hand side(s)
∗First nonzero entry in each row is 1, it’s to the right of the 1 in the row above, and
it’s the only nonzero entry in that column.
• Fundamental operations:

1. Replace one row with linear combination of it and other rows
2. Interchange two rows
3. Re-label two variables (interchange two columns)

• Simplest variant uses only #1 operations but numerical stability improved by
adding #2 (partial pivoting) or both #2 and #3 (full pivoting).



Gaussian Elimination

• Solve:

2x1 + 3x2 = 7
4x1 + 5x2 = 13

• Only care about numbers – form “tableau” or “augmented matrix”:[
2 3
4 5

���� 713 ]
• Could have multiple right-hand sides (e.g. for computing an inverse)



Gaussian Elimination

• Given: [
2 3
4 5

���� 713 ]
• Goal: reduce this to the following form:[

1 0
0 1

���� ?? ]
and read o� answer from right column



Gaussian Elimination

[
2 3
4 5

���� 713 ]
• Basic operation: replace any row by linear combination with any other row
• Here, replace first row with 1/2 times first row plus 0 times second row:[

1 3/2
4 5

���� 7/213 ]



Gaussian Elimination

[
1 3/2
4 5

���� 7/213 ]
• Replace second row with -4 times first row plus 1 times second row:[

1 3/2
0 −1

���� 7/2−1 ]
• Negate second row: [

1 3/2
0 1

���� 7/21 ]



Gaussian Elimination

[
1 3/2
0 1

���� 7/21 ]
• Add −3/2 times second row to first row:[

1 0
0 1

���� 21 ]
• . . . aaaaand we’re done. This is in reduced row-echelon form!



Gaussian Elimination Analysis

• For each row i :
– Multiply row i by 1/aii
– For each other row j:

• Add −aji times row i to row j

• Innermost loop executed n(n − 1) times, and requires
n + 1 additions and multiplications

– Asymptotic behavior: when n is large, that’s about
2n arithmetic operations in inner loop, or about 2n3 total

• Can solve any number of RHS at once (but must be known ahead of time)



Pivoting

• Consider this system: [
0 1
2 3

���� 28 ]
• Immediately run into problem: algorithm wants us to divide by zero!
• More subtle version: [

0.001 1
2 3

���� 28 ]
• Small diagonal (“pivot”) elements bad!

– Swap in larger element from somewhere else. . .



Partial Pivoting

[
0 1
2 3

���� 28 ]
• Swap rows 1 and 2: [

2 3
0 1

���� 82 ]
• Now continue: [

1 3/2
0 1

���� 42 ] [
1 0
0 1

���� 12 ]



Real-World Linear Solvers

• In practice, partial pivoting widely implemented
• To speed things up, don’t go all the way to reduced row-echelon form

– Also, it would be nice to be able to specify a new b a�er the expensive
computation on A has been done. . .



Triangular Systems

• Special case: lower-triangular system
a11 0 0 · · ·

a21 a22 0 · · ·

a31 a32 a33 · · ·
...

...
...
. . .

���������
b1
b2
b3
...





Triangular Systems

• Solve by forward substitution
a11 0 0 · · ·

a21 a22 0 · · ·

a31 a32 a33 · · ·
...

...
...
. . .

���������
b1
b2
b3
...


x1 =

b1
a11

x2 =
b2 − a21x1

a22
x3 =

b3 − a31x1 − a32x2
a33

· · ·



Triangular Systems

• Similarly, upper triangular systems solved by back-substitution
a11 a12 a13 a14
0 a22 a23 a24
0 0 a33 a34
0 0 0 a44

��������
b1
b2
b3
b4


x4 =

b4
a44

x3 =
b3 − a34x4

a33
x2 =

b2 − a24x4 − a23x3
a22

. . .



LU Decomposition

• Both special cases can be solved in time ∼ n2

• This motives a factorization approach:
– Find a way of writing A as LU , where L is lower-triangular and

U is upper-triangular
– Ax = b ⇒ LUx = b ⇒ Ly = b ⇒ Ux = y
– Time to factor matrix dominates computation
– Turns out to be faster than Gaussian elimination (but still cubic in n)
– Can solve for new b at any time a�er factorization

• Real-world, general-purpose linear solvers (such as numpy.linalg.solve)
use LU Decomposition with partial pivoting

– . . . but for big (n ∼ thousands or millions) problems, approximate iterative
methods are common


