

Project 5: Virtual Memory

Project Info

● Design Reviews: Tuesday, 8am-12pm, 11/25
– You must do these before you leave for break

● OH: Thursday, 11/20, 4:30-6:30pm and 7:30-
9:30pm. Will probably host second round of OH
on Sunday after break

● Due date: Thursday, 12/4, at 11:59pm

General Notes

● You must implement everything before you can
run the tests

● Familiarize yourself with the 2-level page table
description of i386
– Read section 3.7.1 and 4.2 of the Intel manual,

linked off project website

● Inspect new PCB structure in kernel.h

High-level bits
● Set up memory for the kernel

● Set up virtual memory for each process, done in the kernel
when you create a new process

– Each process now runs in virtual memory. Mapping
virtual memory-> physical memory is now the
responsibility of the kernel. Hardware then uses this
mapping when instructions are actually executed.

● Implement the page_fault_handler() in the kernel

– If a virtual page is not in memory, the kernel pages it in
from disk, and it becomes mapped to a physical page.
Physical pages are static; virtual pages are moved
between physical memory and disk.

Mapping virtual → physical

(Straight from manual) To select the various table
entries, the linear address is divided into three sections:

● (Level 1) Page-directory entry—Bits 22 through 31
provide an offset to an entry in the page directory. The
selected entry provides the base physical address of a
page table.

● (Level 2) Page-table entry—Bits 12 through 21 of the
linear address provide an offset to an entry in the
selected page table. This entry provides the base
physical address of a page in physical memory.

● Page offset—Bits 0 through 11 provides an offset to a
physical address in the page.

A Picture

Directory Entry

Page Entry

Page Faults

● Page fault happens because virtual page is not
resident on a physical page

● How does hardware know a page fault
happened?

● Need to keep track of metadata of physical
pages
– Free or not?

– Metadata so you can do a replacement policy (FIFO
sufficient for this assignment)

– Pinned? When would you want to pin a phys page?

Paging from disk

● To resolve a page fault, might have to evict contents of
a physical page to disk

– Then need 2 disk ops: 1) eviction of contents of
physical page, 2) bring in contents of virtual page,
which are sitting on disk, and copy contents into the
physical page

● Actual code uses a USB disk image for swap storage
(usb/scsi.h)

● Assume that processes do not change size (no
dynamic memory allocation)

● When to flush TLB?

● Update page tables!

Initializing Kernel Memory

● Allocate N_KERNEL_PTS (page tables)
● For each page table, allocate pages until you

reach MAX_PHYSICAL_MEMORY
● For the kernel, physical address == virtual

address
● Set correct flags

– Give user permission to use the memory pages
associated with the screen

Setting up Process Memory
● Processes keep track of 4 types of pages:

– Page directory

– Page tables

– Stack page table

– Stack pages

● PROCESS_START (virtual address of code +
data)
– Use one page table and allocate all pages

– Process gets pcb->swap_size memory

● PROCESS_STACK (vaddr of stack top)
– Allocate N_PROCESS_STACK_PAGES

More Tips

● One page table is enough for a process' code
and data memory space.

● Some functions (esp the page fault handler)
can be interrupted!
– Use sync primitive

● Some pages don't need to be swapped out
– Kernel pages, process page directory, page tables,

stack page tables, and stack pages

● Project website can be confusing about the
term “pages”. Use common sense to determine
if it means physical or virtual page.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

