
Estimating Curvatures and Their Derivatives on Triangle Meshes

Szymon Rusinkiewicz
Princeton University

Abstract

The computation of curvature and other differential prop-

erties of surfaces is essential for many techniques in analysis

and rendering. We present a finite-differences approach for

estimating curvatures on irregular triangle meshes that may

be thought of as an extension of a common method for esti-

mating per-vertex normals. The technique is efficient in space

and time, and results in significantly fewer outlier estimates

while more broadly offering accuracy comparable to existing

methods. It generalizes naturally to computing derivatives of

curvature and higher-order surface differentials.

1 Introduction

As the acquisition and use of sampled 3D geometry become
more widespread, 3D models are increasingly becoming the
focus of analysis and signal processing techniques previously
applied to data types such as audio, images, and video. A key
component of algorithms such as feature detection, filtering,
and indexing, when applied to both geometry and other data
types, is the discrete estimation of differential quantities. In
the case of shape, surface differentials such as normals and
curvatures arise not only in the context of these “signal anal-
ysis” applications, but also in pure graphics algorithms such
as illumination and nonphotorealistic rendering (Figure 1).
This paper describes a general, robust algorithm for estimat-
ing curvatures and higher-order surface differentials on sur-
faces approximated by triangle meshes.

A key difference between 3D meshes and data types such
as images, video, and even volumetric data stored on voxel
grids is that meshes are typically irregularly sampled. The
distribution of vertices across the surface is not uniform, and
connectivity (in particular, the valence of each vertex) is not
regular except in special cases. In order to be generally use-
ful, therefore, an algorithm for estimating differential quan-
tities must be robust under different distributions of triangle
sizes and shapes. Other properties desirable in an algorithm
that operates on commonly-encountered meshes include:

• not placing any requirements on the topology of the sur-
face. In particular, the assumption that a surface is hole-
free is often violated.

• being free of degenerate cases, unless the mesh itself is
degenerate. For example, we wish to avoid the insta-
bility of some methods for particular configurations of
vertices, such as collinear points.

Effect of neighborhood size: Practically all curvature es-
timation techniques (or, more generally, techniques for es-
timating derivatives of sampled signals) have as an explicit

Figure 1: Left: suggestive contours for line drawings [DeCarlo
et al. 2003] are a recent example of a driving application for the
estimation of curvatures and derivatives of curvature. Right: sug-
gestive contours are drawn along the zeros of curvature in the

view direction, shown here in blue, but only where the derivative

of curvature in the view direction is positive (the curvature deriva-

tive zeros are shown here in red). This paper describes a general

and stable algorithm for estimating curvature and derivative-of-

curvature tensors on triangle meshes.

user-tunable parameter the size of a “neighborhood” over
which the estimate is computed. The selection of neigh-
borhood size can affect results significantly: small neighbor-
hoods provide better estimates for clean data, while increas-
ing the neighborhood size smoothes the estimates, leading to
less sensitivity to noise. For maximum flexibility it is desir-
able that the full range of neighborhood sizes be available to
the user; an algorithm should not become noisy or unstable
for small neighborhoods. As we will see, however, this is not
the case for many existing algorithms: when run on a small
(1-ring) neighborhood, they encounter degeneracies or pro-
duce large errors even for noise-free data. Making these algo-
rithms stable, therefore, requires large neighborhoods, which
results in blurred curvature estimates.

Motivated by the goal of giving the user maximum flexi-
bility and not constraining him or her to blurry estimates, we
augment our list of desired properties with:

• not relying on large neighborhoods to provide stability
and robustness.

Because choosing a larger neighborhood size is equivalent to
smoothing the mesh, meaning that curvature estimation and
noise elimination can be decoupled, we will restrict all com-
parisons in this paper to using the smallest possible neigh-
borhood for estimating curvatures, namely a 1-ring of faces
around each vertex.

1

Proposed algorithm: In the case of estimating per-vertex
normals, we note that a commonly-used algorithm, namely
taking a weighted average of the normals of faces touching
a vertex, satisfies all of the above properties. It handles arbi-
trary triangulations, makes no assumptions about topology or
the presence of holes, is typically free of degeneracies, and
operates on local neighborhoods. This algorithm is also ef-
ficient, requiring only a single pass over faces and one over
vertices (to rescale the resulting normals to unit length), and
does not require any connectivity data structures beyond the
usual vertex list and indexed face set.

Inspired by this algorithm, we present a method for com-
puting curvatures and higher-order derivatives in an analo-
gous fashion: we first compute the properties per-face, then
estimate the value at each vertex as a weighted average over
the immediately adjacent faces. The per-face computations
are based directly on the definition of the relevant derivative,
using a a finite-difference approximation. The curvature ten-
sor, for example, is defined in terms of the directional deriva-
tive of the surface normal, and we calculate it from differ-
ences between estimated per-vertex normals.

Section 2 presents a brief review of curvatures and exist-
ing algorithms for computing them, while Section 3 describes
the proposed new algorithm for estimating curvatures and
higher-order surface derivatives. Section 4 presents results
comparing the stability and accuracy of the proposed algo-
rithm to previous work, and Section 5 presents our conclu-
sions.

2 Background and Previous Work

We begin with a brief overview of curvatures on a 3D surface
(see, for example, [Cipolla and Giblin 2000] for further de-
tails). The normal curvature κn of a surface in some direction
is the reciprocal of the radius of the circle that best approxi-
mates a normal slice of surface in that direction. The normal
curvature varies with direction, but for a smooth surface it
satisfies

κn =
(

s t
)

(

e f

f g

)(

s

t

)

=
(

s t
)

II

(

s

t

)

(1)

for any unit-length vector (s,t) in the local tangent plane (ex-
pressed in terms of an orthonormal coordinate system cen-
tered at the point). The symmetric matrix II appearing here,
known as the Weingarten matrix or the second fundamental
tensor, can be diagonalized by a rotation of the local coordi-
nate system to give

κn =
(

s′ t′
)

(

κ1 0
0 κ2

)(

s′

t′

)

= κ1s
′2 +κ2 t

′2, (2)

where κ1 and κ2 are the principal curvatures and (s′,t′) is
now expressed in terms of the principal directions, which are
the directions in which the normal curvature reaches its min-
imum and maximum. The principal curvatures and principal
directions have been widely used in computer graphics, ap-
pearing in applications such as remeshing [Alliez et al. 2003],
smoothing [Desbrun et al. 1999], segmentation [Trucco and
Fisher 1995], visualization [Interrante et al. 1995], and non-

photorealistic rendering [Hertzmann and Zorin 2000; Praun
et al. 2001; DeCarlo et al. 2003].

We may classify existing methods for estimating principal
curvatures and directions (as opposed to methods that esti-
mate only the mean curvature H = (κ1 + κ2)/2 or Gaussian
curvature K = κ1 κ2) into three general categories:

• Patch fitting methods fit an analytic surface (usually
a polynomial) to points in a local region, then compute
curvatures of the fit surface analytically. These methods
clearly produce exact results if the vertices are on a sur-
face of the class being fit, and Cazals and Pouget [2003]
have shown that in the case of a general smooth surface
the estimated curvatures converge to the true ones, at
least in nondegenerate cases. The weakness of patch fit-
ting methods that only consider vertex positions is that
they become unstable near degenerate configurations,
most notably if the points lie near a pair of intersect-
ing lines (Figure 2). Goldfeather and Interrante [2004]
have shown that the degenerate cases can be avoided,
and accuracy improved in general, by including not only
points but also estimated per-vertex normals in the fit.

• Normal curvature-based methods first estimate the
normal curvature in the direction of each edge leaving
a vertex, then use the κn estimates to find the second
fundamental tensor. Most commonly, the formula

κi j =
2ni · (pi− pj)
|pi− pj|2

(3)

is used to find the normal curvature at point pi, in the
direction of some neighboring point pj. The principal
curvatures may then be found from a function of the
eigenvalues of ∑ j κi j(pi− pj)(pi − pj)

T [Taubin 1995;
Page et al. 2001; Hameiri and Shimshoni 2002], which
is accurate only when the distribution of the directions
to neighboring points is uniform. Alternatively, and
more generally, the κn samples may be fit to (1) us-
ing least squares [Chen and Schmitt 1992; Hameiri and
Shimshoni 2002]. Meyer et al. use a similar fit, con-
strained to match estimates of mean and Gaussian cur-
vature obtained using a different technique [Meyer et al.
2002]. As shown by Goldfeather and Interrante [2004],
normal curvature methods and patch-fitting methods are
very similar, effectively differing in whether they fit cir-
cles or parabolas to the surface samples. This implies
that normal curvature techniques have the same weak-

Figure 2: Left: degenerate configuration for algorithms that esti-
mate curvature by fitting a parametric patch to points in a neigh-

borhood, as well as for algorithms that use a least-squares fit of

normal curvatures. Configurations similar to this one, including

any number of vertices lying on two intersecting lines, will yield

unstable estimates. Center, right: continuous surfaces of different
curvatures consistent with the given vertices.

2

Figure 3: Many “tensor averaging” algorithms produce signifi-
cant errors in estimating curvature, even for densely-spaced sam-

ples and simple geometries such as a sphere. Here we show

the principal curvature estimates computed by the algorithm of

Cohen-Steiner and Morvan [2003], for a tessellated sphere of ra-
dius 1 (which should have curvature 1 everywhere). Note the error

in the curvature estimate at the central vertex: this error does not

decrease as the sampling gets more dense.

ness as point-fitting: they are unstable when the neigh-
bors of a vertex are close to a pair of intersecting lines.

• Tensor averaging methods compute the average of
the curvature tensor over a small area of the polygo-
nal mesh [Cohen-Steiner and Morvan 2003; Alliez et al.
2003]. The curvature of a polyhedron is zero within a
face and infinite along the edges, but its average over a
region of non-zero measure (such as the Voronoi region
of a vertex) is finite and well-defined. Tensor averaging
definitions of curvature on a mesh are elegant and free
of unstable configurations, but produce large errors for
certain vertex arrangements (Figure 3). Our method, in
contrast, produces correct results for ths configuration.

3 Algorithm

As mentioned earlier, our method for computing curvatures
and derivatives of curvature is based on the common algo-
rithm for finding per-vertex normals by averaging adjacent
per-face normals. To extend this to the case of curvatures,
we first define how curvature is computed over a face, then
show how to combine curvature estimates expressed in terms
of different coordinate systems. Finally, we describe how the
algorithm generalizes to higher-order surface differentials.

3.1 Per-Face Curvature Computation

The second fundamental tensor II, already seen in equation 1,
is defined in terms of the directional derivatives of the surface
normal:

II=
(

Dun Dvn
)

=

(

∂n
∂u

·u ∂n
∂v

·u
∂n
∂u

·v ∂n
∂v

·v

)

, (4)

where (u,v) are the directions of an orthonormal coordinate
system in the tangent frame (the sign convention used here
yields positive curvatures for convex surfaces with outward-
facing normals). Multiplying this tensor by any vector in the
tangent plane gives the derivative of the normal in that direc-
tion:

IIs=Ds n. (5)

Note that the derivative of the normal is itself a vector in the
tangent plane: it often has a component in direction s, but can
also have a component in the perpendicular direction (caused
by “twist” in the surface).

Although this definition holds only for smooth surfaces,
we can approximate it in the discretized case by using finite
differences. For example, for a triangle we have three well-
defined directions (the edges) together with the differences
in normals in those directions (computed from the per-vertex
normals). Thus, we have

e0

2n

e1

e2 1n

0n
u
v

II

(

e0 ·u
e0 ·v

)

=

(

(n2 −n1) ·u
(n2 −n1) ·v

)

II

(

e1 ·u
e1 ·v

)

=

(

(n0 −n2) ·u
(n0 −n2) ·v

)

II

(

e2 ·u
e2 ·v

)

=

(

(n1 −n0) ·u
(n1 −n0) ·v

)

This provides a set of linear constraints on the elements of the
second fundamental tensor, which may then be determined
using least squares. Note that this estimate is always well-
defined, unless the triangle itself has three collinear vertices.

Although a discretization error is introduced by this finite-
difference approximation, we have found that it has a high
degree of accuracy in many common cases. For example,
when the vertices of the triangle lie on the surface of a sphere
and the vertex normals are the normals of the sphere, the cur-
vatures produced by this technique are exact regardless of the
shape of the triangle.

3.2 Coordinate System Transformation

Once we have a curvature tensor expressed in the (u f ,v f) co-
ordinate system of a face, we must average it with contribu-
tions from adjacent triangles. To do this, we assume that each
vertex p has its own orthonormal coordinate system (up,vp),
defined in the plane perpendicular to its normal, and derive a
change-of-coordinates formula for transforming a curvature
tensor into the vertex coordinate frame.

We first consider the case when the face and vertex normals
are equal, so that (u f ,v f) and (up,vp) are coplanar. The first
component of II, expressed in the (up,vp) coordinate system,
may be found as

ep =
(

1 0
)

(

ep fp
fp gp

)(

1
0

)

= uT
p II up. (6)

Thus, we can find ep in terms of the coordinates of up ex-
pressed in the old (u f ,v f) coordinate system:

ep = uT
p II up =

(

up ·u f
up ·v f

)T

II

(

up ·u f
up ·v f

)

. (7)

Similarly, we find that fp = uT
p II vp and gp = vTp II vp.

When the old and new coordinate systems are noncopla-
nar, we cannot simply project the new up and vp axes into
the old (u f ,v f) coordinate system. The projections would
not, in general, be unit-length, which would cause a “loss”
of curvature at each each change of coordinates (specifically,

3

the mean curvature would be multiplied by the square of the
cosine of the angle between the normals). Instead, we first
rotate one of the coordinate systems to be coplanar with the
other, rotating around the cross product of their normals. This
avoids the cos2 θ curvature loss and increases the accuracy of
estimates on coarsely-tessellated surfaces.

3.3 Weighting

The question of weighting, i.e. how much of the face cur-
vature should be accumulated at each vertex, has been ad-
dressed by prior work. Following Meyer et al. [2002], we
take w f,p to be the portion of the area of f that lies closest to
vertex p. We have found that this “Voronoi area” weighting
produces the best estimates of curvature for triangles of vary-
ing sizes and shapes. This contrasts with the weights used for
estimating normals, for which we take w f,p to be the area of
f divided by the squares of the lengths of the two edges that
touch vertex p. As shown by Max [1999], this produces more
accurate normal estimates than other weighting approaches,
and is exact for vertices that lie on a sphere.

3.4 Algorithm and Extension to Third Derivatives

We may now state our final algorithm for per-vertex compu-
tation of the curvature tensor:

Compute per-vertex normals
Construct an initial (up,vp) coordinate system in the

tangent plane of each vertex
for each face:

Compute edge vectors e and normal differences ∆n

Solve for II using least squares
for each vertex p touching the face:

Re-express II in terms of (up,vp)
Add this tensor, weighted by w f,p, to vertex curvature

for each vertex:
Divide the accumulated II by the sum of the weights
If desired, find principal curvatures and directions

by computing eigenvalues and eigenvectors of II

One of the most important features of this algorithm is that
it generalizes to higher-order differential properties. Just as
the curvature tensor gives the change in the normal with mo-
tion along the surface, one may define a “derivative of cur-
vature” tensor that gives the change in the curvature along
the surface. This is a 2 × 2× 2 rank-3 tensor or “cube of
numbers,” and because of symmetry it has only four unique
entries. Writing it as a vector of matrices, the derivative-of-
curvature tensor C has the form

C=
(

Du II Dv II
)

=

((

a b

b c

)(

b c

c d

))

. (8)

Although derivatives of curvature have not been applied in
as many contexts as curvatures themselves, they have been
used for such applications as fair surface design [Moreton
and Séquin 1992; Gravesen and Ungstrup 2002], detecting
creases in surfaces [Lengagne et al. 1996; Watanabe and
Belyaev 2001], and producing line drawings [DeCarlo et al.
2003].

The C tensor has the following properties:

• Multiplying C by a direction vector three times, which
we will denote byC(s,s,s), gives a scalar: the derivative
of curvature in that direction.

• Multiplying C by a direction vector just once gives a 2×
2 tensor (or symmetric matrix) equal to the directional
derivative of II in that direction.

• Cmay be used for other calculations involving the third-
order differential properties of the surface. For example,
the suggestive contour application, illustrated in Fig-
ures 1 and 5, requires computing the directional deriva-
tive of radial curvature, which is the normal curvature
in (the tangent-plane projection of) the view direction.
As shown by DeCarlo et al. [2004], this derivative may
be written as

Dwκr =C(w,w,w)+2K cotθ when κr = 0, (9)

where w is the normalized projection of the view di-
rection onto the local tangent plane. The “extra” term
occurs because of the application of the product rule in
evaluating the derivative Dw(wTIIw).

A trivial extension to our curvature-estimation algorithm
can be used to estimate derivatives of curvature and, where
needed, any higher-order derivatives. Just as curvatures are
estimated per-face by considering the differences in normals
along the edges, we estimate C with a least-squares fit to the
differences in the curvature tensor along the edges. The algo-
rithm uses the change-of-coordinate-system formula to trans-
form curvatures from vertex coordinates to face coordinates,
and an analogous formula to transform the C back into vertex
coordinates.

4 Results and Discussion

Figure 4 shows visualizations of the curvature and derivative
of curvature computed using our method, for several mod-
els. Note the pairs of lines of high curvature derivative on
both sides of each ridge in the model of St. Matthew (third
row, right): the curvature changes rapidly on the sides of each
mark, but the rate of change is a local minimum at the ridge it-
self. This property has been used to locate ridges and valleys
in mesh data [Lengagne et al. 1996; Watanabe and Belyaev
2001].

Scalability: Figure 5 shows visualizations (suggestive con-
tours and minimum principal curvature directions, respec-
tively) obtained using computed curvatures and derivatives of
curvature on a large (1.5 million polygon) scanned mesh. We
found that the algorithm is efficient enough in both time (cur-
vature computation took 4 seconds) and space (no additional
connectivity data structures are required) to be practical even
for data sets of this size.

Robustness: As discussed in the introduction, we are par-
ticularly interested in the ability of different curvature esti-
mation algorithms to return stable and accurate results for
small neighborhood sizes. Figures 6 and 7 show the curva-
tures computed using either our algorithm or contemporary
algorithms in each of the three categories considered earlier.

4

In each case, the estimate was computed over a 1-ring neigh-
borhood. Note the presence of outliers (which show up as
brightly-colored dots in this visualization) in the estimates
computed using the alternative methods – these incorrect es-
timates are largely due to the unstable configurations consid-
ered in Figures 2 and 3. Note that for all algorithms that used
normals, the normals were computed from the mesh itself,
using the weighted-average method with a 1-ring neighbor-
hood and Max’s weights.

Accuracy: Although the main goals of our algorithm are ro-
bustness and easy generalizability to derivatives of any order,
we have found that the quality of the curvature estimates it
produces on analytic models is, in many cases, competitive
with other methods in the literature. Figure 8 shows results
for a torus mesh, examining the effects of both noise (per-
pendicular to the surface) and differences in surface tessella-
tion. The left graph of Figure 8 shows curvature error for a
uniform tessellation of the torus, for both our algorithm and
contemporary algorithms in each of the three categories con-
sidered earlier. Note that both the normal curvature fitting
and tensor averaging methods produce good results for per-
fect data, but degrade rapidly with the addition of noise. The
center graph of this figure shows the effect of irregular tessel-
lation on the performance of the algorithms. We see that al-
though the performance of all algorithms deteriorates relative
to the regular tessellation, the results of the tensor averaging
method, in particular, degrade significantly. Extending the
tensor averaging method to a 2-ring neighborhood (which is
a reasonable comparison, since the estimates produced by our
method are implicitly affected by vertices in a 2-ring) results
in performance very similar to our method.

In order to compare these methods on a larger variety
of surface shapes, we generated random cubic polynomi-
als with coefficients of the quadratic and cubic terms in the
range [−0.1,0.1] (essentially the same experiment as that of
Max [1999]). Each polynomial was tessellated randomly, and
the computed curvatures were compared to ground truth. The
results are shown in Figure 8, right: the relative error of the
proposed algorithm is slightly worse than the alternatives on
clean data, and comparable on data with 2% added noise.
Note that the “patch fitting” algorithms assume a polynomial
surface, leading to especially good performance of these al-
gorithms on this class of models.

5 Conclusion

This paper presents a general algorithm for computing curva-
tures, derivatives of curvature, and higher-order differential
properties on triangular meshes. The algorithm is efficient,
robust, and free of degenerate configurations, and yields ac-
curate estimates in the presence of irregular tessellation and
moderate amounts of noise.

References

ALLIEZ, P., COHEN-STEINER, D., DEVILLERS, O., LÉVY, B.,
AND DESBRUN, M. 2003. Anisotropic Polygonal Remeshing.
ACM Transactions on Graphics, Vol. 22, No. 3.

CAZALS, F., AND POUGET, M. 2003. Estimating Differen-
tial Quantities Using Polynomial Fitting of Osculating Jets. In
Proc. Symposium on Geometry Processing.

CHEN, X., AND SCHMITT, F. 1992. Intrinsic Surface Properties
from Surface Triangulation. In Proc. European Conference on
Computer Vision.

CIPOLLA, R., AND GIBLIN, P. J. 2000. Visual Motion of Curves
and Surfaces. Cambridge University Press.

COHEN-STEINER, D., AND MORVAN, J.-M. 2003. Restricted
Delaunay Triangulations and Normal Cycle. In Proc. Sympo-
sium on Computational Geometry.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND

SANTELLA, A. 2003. Suggestive Contours for Conveying
Shape. ACM Transactions on Graphics, Vol. 22, No. 3.

DECARLO, D., FINKELSTEIN, A., AND RUSINKIEWICZ, S.
2004. Interactive Rendering of Suggestive Contours with Tem-
poral Coherence. In Proc. NPAR.

DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. H.
1999. Implicit Fairing of Irregular Meshes Using Diffusion and
Curvature Flow. In Proc. ACM SIGGRAPH.

GOLDFEATHER, J., AND INTERRANTE, V. 2004. A Novel
Cubic-Order Algorithm for Approximating Principal Direction
Vectors. ACM Transactions on Graphics, Vol. 23, No. 1.

GRAVESEN, J., AND UNGSTRUP, M. 2002. Constructing In-
variant Fairness Measures for Surfaces. Advances in Computa-
tional Mathematics, Vol. 17.

HAMEIRI, E., AND SHIMSHONI, I. 2002. Estimating the Prin-
cipal Curvatures and the Darboux Frame from Real 3D Range
Data. In Proc. 3DPVT.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating Smooth
Surfaces. In Proc. ACM SIGGRAPH.

INTERRANTE, V., FUCHS, H., AND PIZER, S. 1995. Enhanc-
ing Transparent Skin Surfaces with Ridge and Valley Lines. In
Proc. IEEE Visualization.

LENGAGNE, R., FUA, P., AND MONGA, O. 1996. Using Crest
Lines to Guide Surface Reconstruction from Stereo. In Proc.
International Conference on Pattern Recognition.

MAX, N. 1999. Weights for Computing Vertex Normals from
Facet Normals. Journal of Graphics Tools, Vol. 4, No. 2.

MEYER, M., DESBRUN, M., SCHRÖDER, P., AND BARR, A. H.
2002. Discrete Differential-Geometry Operators for Triangu-
lated 2-Manifolds. In Proc. VisMath.

MORETON, H. P., AND SÉQUIN, C. H. 1992. Functional Opti-
mization for Fair Surface Design. Computer Graphics (Proc.
ACM SIGGRAPH 92), Vol. 26, No. 2.

PAGE, D. L., KOSCHAN, A., SUN, Y., PAIK, J., AND ABIDI, A.
2001. Robust Crease Detection and Curvature Estimation of
Piecewise Smooth Surfaces from Triangle Mesh Approxima-
tions Using Normal Voting. In Proc. Conference on Computer
Vision and Pattern Recognition.

PRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A.
2001. Real-Time Hatching. In Proc. ACM SIGGRAPH.

TAUBIN, G. 1995. Estimating the Tensor of Curvature of a Sur-
face from a Polyhedral Approximation. In Proc. International
Conference on Computer Vision.

TRUCCO, E., AND FISHER, R. B. 1995. Experiments in Curv-
ature-Based Segmentation of Range Data. IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 17, No. 2.

WATANABE, K., AND BELYAEV, A. G. 2001. Detection of
Salient Curvature Features on Polygonal Surfaces. Computer
Graphics Forum (Proc. Eurographics 2001), Vol. 20, No. 3.

5

Curvature Curvature Derivative Magnitude

 = 01κ

 < 01κ > 01κ

 < 02κ

 = 02κ

 > 0κ 2

||C|| = 0

||C|| > 0

Figure 4: Color-coded visualizations of computed curvature (left) and magnitude of curvature derivative (right). Although the curvature
derivative is computed as a 2×2×2 tensor, here we visualize a single scalar invariant: the sum of squares of entries in the tensor. As shown
by Gravesen and Ungstrup [2002], this quantity is invariant to rotation, and does a good job of characterizing the qualitative magnitude
of the derivative of curvature.

6

Figure 5: Left: suggestive contour rendering of a model of the face of St. Matthew (1.5M polygons). Right: detail of minimum principal
curvature directions around the eye. Computation of curvatures and curvature derivatives took 4.0 and 5.2 seconds, respectively. To filter

out scanning noise, the normal field was smoothed by a Gaussian filter of width 0.5 mm (this also had the effect of smoothing the curvature

estimates).

Our method Fit to Points and Normals [Goldfeather and Interrante 2004]

Fit to Normal Curvature Tensor Averaging [Alliez et al. 2003]
Figure 6: Color-coded visualization (see Figure 4, bottom) of computed curvatures on irregularly-tessellated models using our method, as
compared to three alternatives. Note the presence of outliers in the estimates computed using the alternative methods – the discussion in

Section 2 points out the origins behind some of these erroneous estimates.

7

Our method Fit to Points and Normals [Goldfeather and Interrante 2004]

Fit to Normal Curvature Tensor Averaging [Alliez et al. 2003]
Figure 7: Color-coded visualization (see Figure 4, bottom) of computed curvatures on irregularly-tessellated models using our method, as
compared to three alternatives. Note the presence of outliers in the estimates computed using the alternative methods – the discussion in

Section 2 points out the origins behind some of these erroneous estimates.

 0

 10

 20

 30

 0 2 4 6 8 10

N
o
rm

a
liz

e
d
 R

M
S

 E
rr

o
r

(p
e
rc

e
n
t)

Added Noise (percent of median edge length)

 Torus (Uniform Tesselation)

Tensor Averaging
Fit to Normal Curvature
Fit to Points and Normals
Our Method

 0

 10

 20

 30

 0 2 4 6 8 10

N
o
rm

a
liz

e
d
 R

M
S

 E
rr

o
r

(p
e
rc

e
n
t)

Added Noise (percent of median edge length)

 Torus (Random Tesselation)

Tensor Averaging
Fit to Normal Curvature
Fit to Points and Normals
Our Method

Curvature Estimation Error for Random Cubics

Algorithm RMS Error RMS Error

(clean data) (2% noise)

Our algorithm 0.30 0.35

Fit to points + normals 0.24 0.38

Fit to normal curvature 0.29 0.36

Tensor averaging 0.46 0.51

Figure 8: Left, center: estimation errors for a torus model, comparing our curvature estimation algorithm to contemporary alternatives
based on tensor averaging [Alliez et al. 2003], fitting to normal curvature estimates, and patch fitting to points and normals [Goldfeather
and Interrante 2004]. We show results for both regular (left) and irregular (center) tessellations, as the amount of noise is increased. We
report the RMS difference between the estimated and exact normal curvatures, integrated over all directions and averaged over all points

on the mesh. The results are averaged over 1000 trials, and results are normalized by the exact RMS curvature over the model. Right:
error for 1000 random cubic polynomials with coefficients in the range [−0.1,0.1].

8

