PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing

Connelly Barnes¹, Eli Shechtman²,³, Adam Finkelstein¹, Dan B Goldman²

¹Princeton University, ²Adobe Systems, ³University of Washington
PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing

Connelly Barnes\(^1\), Eli Shechtman\(^{2,3}\), Adam Finkelstein\(^1\), Dan B Goldman\(^2\)

\(^1\)Princeton University, \(^2\)Adobe Systems, \(^3\)University of Washington
PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing

(a) Original (b) Inpainting (c) Retarget (d) Reshuffle

Connelly Barnes¹, Eli Shechtman²,³, Adam Finkelstein¹, Dan B Goldman²

¹Princeton University, ²Adobe Systems, ³University of Washington
Roadmap

Motivation

PatchMatch Algorithm

Interactive Editing
Traditional Photo Editing

(played back at 10x real-time)
Higher Level Editing

Retargeting [Avidan ‘07]

Hole filling [Sun ‘05]

Reshuffling [Simakov ‘08], [Cho ‘08]
User Interaction

Retargeting [Avidan ‘07]

Hole filling [Sun ‘05]

Reshuffling [Simakov ‘08], [Cho ‘08]
Non-Parametric Patch Sampling

Image retargeting [Simakov et al. ‘08]
(5 minutes per 250x200 input image)
Non-Parametric Patch Sampling

Image reshuffling/collage [Simakov et al. ‘08]
(5 minutes per 250x200 input image)
Iterative Optimization Methods

Retargeting and Reshuffling
[Simakov '08]

Texture Synthesis
[Kwatra '05]

Hole Filling
[Wexler '04]
Hole Filling

Repeat

- Initialize hole
- Find NN inside → out
- Update image

[Wexler ‘04]
Hole Filling

Initialize hole → Find NN inside → out → Update image

[Wexler '04]
Retargeting / Reshuffling

Repeat

Initial guess \(\rightarrow\) Find NN \(A \leftrightarrow B\) \(\rightarrow\) Update output

[Simakov ‘08]
Retargeting / Reshuffling

Initial guess → Find NN (A ↔ B) → Update output

Slow

[Simakov ‘08]
Related Work

- **kd-tree with PCA**

 [Hertzmann '01]

- **Propagation**

 [Ashikhmin '01]

- **k-coherence**

 [Tong '02]
Problem
Intuition for PatchMatch
Nearest Neighbor Field

\[f(a) = b - a \]
Random Initialization

\(A \quad \overset{\text{arrows}}{\longrightarrow} \quad B \)
After propagation:

\[f(x, y) = \arg\min_{D} \{ \text{current, left, above} \} \]
After propagation:

\[f(x, y) = \arg\min_D \{ \text{current, left, above} \} \]
Propagation
Random Search

A

B
Random Search

Box width: w
(image width)
Random Search

A

B

Box width: aw
Random Search

Box width: a^2w
Random Search

Box width: 1 pixel
After propagation and search:

\[f(x, y) = \arg\min_D \{ \text{candidate offsets} \} \]
Propagation Only

First Pass

Image A

Correspondence Vectors
(red: x, blue: y)

Image B

Reconstruction of image A using patches from image B
Propagation Only

Correspondence Vectors (red: x, blue: y)

Image A

Reconstruction of image A using patches from image B

Second Pass
Propagation Only

Correspondence Vectors (red: x, blue: y)

Reconstruction of image A using patches from image B
Random Search Only

First Pass

Correspondence Vectors (red: x, blue: y)

Reconstruction of image A using patches from image B
Random Search Only

Second Pass

Image A

Correspondence Vectors
(red: x, blue: y)

Image B

Reconstruction of image A
using patches from image B
Random Search Only

Correspondence Vectors (red: x, blue: y)

Reconstruction of image A using patches from image B

Third Pass
Convergence

First Pass

Image A

Correspondence Vectors (red: x, blue: y)

Reconstruction of image A using patches from image B

Image B
Convergence

Propagation
Random Search
PatchMatch
Ground Truth
Convergence

Correspondence Vectors (red: x, blue: y)

Reconstruction of image A using patches from image B

Iteration 1

Iteration 3
Convergence

Correspondence Vectors (red: x, blue: y)

Reconstruction of image A using patches from image B
Convergence

Correspondence Vectors
(red: x, blue: y)

Reconstruction of image A using patches from image B
Image Completion

Input

Hole

Output (enlarged)
Image Completion

Input

Hole + constraints

Output (enlarged)
Image Completion
(without constraints)
Image Completion
(with constraints)

Input

Hole + constraints

Output (enlarged)
Retargeting / Reshuffling

Image retargeting [Simakov et al. ‘08]
(5 minutes per 250x200 input image)
Deformation Constraints
Deformation Constraints

Input

Partially retargeted
Line Constraints

Input

Improved
seam carving
[Rubinstein ‘08]

Our result
Region Constraints
Region Constraints

Original

Retargeted

With constraints
Reshuffling

Input

[Rubinstein ‘08] [Wang ‘08] PatchMatch
Reshuffling

Input

Enlarged

Reduced
Reshuffling

(demo played back at 5x real-time)
Local Scale

Boat marked by user

Scaled up, preserving texture

Tree marked by user

Scaled up, preserving texture
Limitations

- Poor convergence on pathological inputs
- Limits on scaling/rotation

Image A

Image B

Reconstruction of A from patches of B
Summary of Contributions
Future Work

Graphics – collages, video, new view synthesis, 3D

Vision – denoising, super-res, segmentation, object detection/recognition, irregularity detection

Algorithm – extend to other domains, GPU, …
Acknowledgements

• Sponsored in part by:
 – Adobe Systems
 – NSF grant IIS-0511965

• Thanks to:
 – SIGGRAPH paper reviewers
 – Tiggraph and Adobe CTL retreat reviewers
 – Jon Goldman, film footage from Kind of a Blur
 – Flickr users for Creative Commons imagery:
 Sevenbrane, Wili, Moi of Ra, Celie
Building marked by user

Tree marked by user

Scaled up, preserving texture

Scaled up, preserving texture