Image-Based Modeling and Rendering

COS 526: Advanced Computer Graphics

Slide credits: Tom Funkhouser, Dan Aliaga, Marc Levoy, Leonard McMillan, Ravi Ramamoorthi

Image-Based Modeling and Rendering

• Generate new views of a scene from existing views

- "Pure" IBR (e.g. lightfields): no geometric model
- Other IBR techniques try to obtain higher quality with less storage by building a model

Image-Based Modeling and Rendering

• Traditional vision / graphics pipelines:

Image-based pipeline:

IBR: Pros and Cons

- Advantages
 - Easy to capture images: photorealistic by definition
 - Simple, universal representation
 - Often bypass geometry estimation?
 - Independent of scene complexity?
- Disadvantages
 - WYSIWYG but also WYSIAYG
 - Explosion of data as flexibility increased
 - Often discards intrinsic structure of model?
- Today, IBR-type methods also often used in synthetic rendering (e.g. real-time rendering PRT)
 - General concept of data-driven graphics, appearance
 - Also, data-driven geometry, animation, simulation
 - Spawned light field cameras for image capture

Images as a Collection of Rays

An image is a subset of the rays seen from a given point - this "space" of rays occupies two dimensions

Leonard McMillan, SIGGRAPH 99 course notes

The Plenoptic Function

The set of rays seen from all points ...

 $p = P(\theta, \phi, x, y, z, \lambda, t)$

Plenoptic Function

- $L(x, y, z, \theta, \phi, t, \lambda)$
- Captures all light flow in a scene
 - to/from any point (x,y,z),
 - in any direction (θ, ϕ) ,
 - at any time (t),
 - at any frequency (λ)
- Enough information to construct any image of the scene at any time

Plenoptic Function Simplifications

- Simplification from 7D to $3 \times 5D$
 - Represent color as RGB: eliminate λ
 - Static scenes: eliminate t

• Other simplfications?

Plenoptic Function – Special Cases

- Sample at one (*x*,*y*,*z*):
 - $-L(\theta, \phi)$ is just an (omnidirectional) image
- Full 5D L(x, y, z, θ, ϕ):
 - Omnidirectional image at each point in space
 - Enough information to reconstruct any view

- Consider a region of space without occlusion
- Light travels in straight lines → some pixels in different images are the same ray of light

Image-Based Representations

 In unoccluded space, can reduce plenoptic function to 4D

Outside looking in

Inside looking out

Lightfields

- Advantages:
 - Simpler computation vs. traditional CG
 - Cost independent of scene complexity
 - Cost independent of material properties and other optical effects
 - Avoid hard vision problems
- Disadvantages:
 - Static geometry
 - Fixed lighting
 - High storage cost

Using Lightfields

- Obtain 2D slices of 4D data set
- Arbitrary views: take other 2D slices
- Challenges:
 - Parameterization
 - Capture
 - Compression
 - Rendering

Lightfield Parameterization

• Point / angle

• Two points on a sphere

Points on two planes

Original images and camera positions

Light Field Two-Plane Parameterization

- Two planes, evenly sampled: "light slab"
- In general, planes in arbitrary orientations
- In practice, one plane = camera locations
 - Minimizes resampling

Light Field Two-Plane Parameterization

Light Field Coverage

Multi-Slab Light Fields

- Capture a 2D set of (2D) images
- Choices:
 - Camera motion: human vs. computer
 - Constraints on camera motion
 - Coverage and sampling uniformity
 - Aliasing

Lumigraph Capture

- Capture: move camera by hand
- Camera intrinsics assumed calibrated
- Camera pose recovered from markers

- Levoy 06:
 - Computer-controlled camera rig
 - Move camera to grid of locations on a plane

- Spherical motion of camera around an object
- Samples space of directions uniformly
- Second arm to move light source – measure reflectance

- Acquire an entire light field at once
- Video rates
- Integrated MPEG2 compression for each camera

(Bennett Wilburn, Michal Smulski, Mark Horowitz)

Lytro

Lightfield Compression

- Compress individual images (JPEG, etc.)
- Adapt video compression to 2D arrays
- Decomposition into basis functions
- Vector quantization

Compression Example

Compressed 120:1

Original

Lightfield Rendering

- How to select rays?
- How to interpolate

Lightfield Rendering

- For each desired ray:
 - Compute intersection with (u,v) and (s,t) planes
 - Take closest ray
- Variants: interpolation
 - Bilinear in (u,v) only
 - Bilinear in (s,t) only
 - Quadrilinear in (u,v,s,t)

Lightfield Rendering

DEMO

Lumigraph Rendering

 Use rough depth information to improve rendering quality

Lumigraph Rendering

 Use rough depth information to improve rendering quality

Lumigraph Rendering

Without using geometry

Using approximate geometry

Unstructured Lumigraph Rendering

- Further enhancement of lumigraphs: do not use two-plane parameterization
- Store original pictures: no resampling
- Hand-held camera, moved around an environment

Unstructured Lumigraph Rendering

- To reconstruct views, assign penalty to each original ray
 - Distance to desired ray, using approximate geometry
 - Resolution
 - Feather near edges of image
- Construct "camera blending field"
- Render using texture mapping

Unstructured Lumigraph Rendering

Blending field

Rendering

Other IBR Representations

- Texture maps
- VDTMs
- Surface lightfields
- Concentric mosaics
- Panorama
- Etc.

[McMillan]

View Interpolation

- Create novel images by resampling photographs
 - Reference images sample 5D plenoptic function

View Interpolation

- Method:
 - Warp nearby reference images to novel viewpoint
 - Blend warped images

Pixel Correspondences

- Vision (e.g. stereo): disparity
- Feature matching: sparse
- 3D model: possibly coarse

Left

Right

Disparity

[Szeliski]

Warping in Action

View Interpolation

- Problem: changes in visibility
 - Disocclusions

[McMillan]

- Partial solutions:
 - Fill holes by interpolating nearby pixels
 - Fill holes with texture synthesis

- Another solution (when possible):
 - Multiple samples per pixel at different depths

- Another solution (when possible):
 - Multiple samples per pixel at different depths

Reference Image

Warped Depth Image [Popescu]

- Another solution (when possible):
 - Multiple samples per pixel at different depths

Reference Image

Warped Layered Depth Image

View Interpolation Challenges

• Capture

- How do we obtain a dense set of calibrated images over a large area in a practical manner?
- Data Management
 - How do we store and access the large amount of data?
- Rendering
 - How do we create novel views from a dense sampling of images in real-time?

Sea of Images

 Use a hemispherical FOV camera driven on cart

Paraboloidal Catadioptric Camera [Nayar97]

Use a hemispherical FOV camera driven on cart

• Locate camera by tracking fiducials

• Result is a "sea of images" spaced a few inches apart

Sea of Images Compression

• Goal: provide access to images along arbitrary viewpoint paths in real-time

Sea of Images Compression

 Approach: create a multiresolution spatial hierarchy of compressed original images and compressed difference images

Sea of Images Rendering

• Use captured images near the novel viewpoint to create new views

floor plan

Novel viewpoint

Sea of Images Rendering

Interpolate three nearest views using detected feature correspondences

- Bell Labs Museum
 - 900 square ft
 - 9832 images
 - 2.2 inch spacing
- Princeton Library
 - 120 square ft
 - 1947 images
 - 1.6 inches
- Personal Office
 - 30 square feet
 - 3475 images
 - 0.7 inches

[Aliaga02]

• Render complex light effects (specular highlights)

cylindrical projection

IBR Summary

- Advantages
 - Photorealistic by definition
 - Do not have to create 3D detailed model
 - Do not have to do lighting simulation
 - Performance independent of scene
- Disadvantages
 - Static scenes only
 - Real-world scenes only
 - Difficult for scenes with specularities, etc.
 - Limited range of viewpoints
 - Limited resolution