Precomputation-Based Rendering

COS 526: Advanced Computer Graphics

Slide credits: Ravi Ramamoorthi

Motivation

- Next week: Image-Based Rendering. Use measured data (real photographs) and interpolate for realistic real-time
- Why not apply to real-time rendering?
 - Precompute (offline) some information (images) of interest
 - Must assume something about scene is constant to do so
 - Thereafter real-time rendering. Often hardware-accelerated
- Easier and harder than conventional IBR
 - Easier because synthetic scenes give info re geometry, reflectance (but CG rendering often longer than nature)
 - Harder because of more complex effects (lighting from all directions for instance, not just changing view)
- Representations and Signal-Processing crucial

General Philosophy

- This general line of work is a large data management and signal-processing problem
- Precompute high-dimensional complex data
- Store efficiently (find right mathematical representation)
- Render in real-time
 - Worry about systems issues like caching
 - Good signal-processing: use only small amount of data but guarantee high fidelity
- Many insights into structure of lighting, BRDFs, ...
 - Not just blind interpolation; signal processing

Precomputation-Based Relighting

Analyze precomputed images of scene

Jensen 2000

Precomputation-Based Relighting

Analyze precomputed images of scene

Jensen 2000

Assumptions

Precomputation

Real-Time Rendering (relight all-frequency effects)

- Exploit linearity of light transport for this
- Later, change viewpoint as well

Why is This Hard?

- Plain graphics hardware supports only simple (point) lights, BRDFs (Phong) without any shadows
- Shadow maps can handle point lights (hard shadows)
- Environment maps complex lighting, BRDFs but no shadows
- IBR can often do changing view, fixed lighting

- How to do complex shadows in complex lighting?
- With dynamically changing illumination and view?

Relighting as a Matrix-Vector Multiply P_1 P_2 P_3 N \bar{T}_{11} T_{1M} T_{12} L_1 T_{22} T_{21} T_{2M} L_2 T_{31} T_{32} T_{3M} • • • \hat{L}_{M} T_{N1} T_{N2} NM

Matrix Columns (Images)

 T_{11} T_{12} T_{21} T_{22} T_{32} 131 T_{3M} T_{N2}

Precompute: Ray-Trace Image Cols

 T_{12} 111 721 T_{22} T_{32} T_{N2}

Precompute 2: Rasterize Matrix Rows

 $\cdots T_{1M}$ T_{12} 111 T_{22} l_{2M} VVV. T_{32} T_{3M} T_{31} ••• T_{N1} T_{N2}

Problem Definition

Matrix is Enormous

- 512 x 512 pixel images
- 6 x 64 x 64 cubemap environments

Full matrix-vector multiplication is intractable
 On the order of 10¹⁰ operations *per frame*

How to relight quickly?

Outline

- Motivation and Background
- Compression methods
 - Low frequency linear spherical harmonic approximation
 - Factorization and PCA
 - Local factorization and clustered PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Factored BRDFs
 - Triple Product Integrals

Precomputed Radiance Transfer

- Better light integration and transport
 - dynamic, area lights
 - self-shadowing
 - interreflections
- For diffuse and glossy surfaces
- At real-time rates
- Sloan et al. 02 (one of the top-cited rendering papers in last 15 years, widely used in games, movie production: Spherical Harmonic Lighting)

point light

area light

area lighting, no shadows

area lighting, shadows

Precomputation: Spherical Harmonics

Diffuse Transfer Results

No Shadows/Inter

Shadows

Shadows+Inter

Arbitrary BRDF Results

Anisotropic BRDFs

Spatially Varying

Relighting as a Matrix-Vector Multiply

Idea of Compression

- The vector is projected onto low-frequency components (say 25). Size greatly reduced.
- Hence, only 25 matrix columns
- But each pixel still treated separately (still have ³/₄ M matrix rows for 512 x 512 image)
- Actually, for each pixel, dot product of matrix row (25 elems) and lighting vector (25 elems) in hardware
- Good technique (common in games, movies) but useful only for broad low-frequency lighting

Outline

- Motivation and Background
- Compression methods
 - Low frequency linear spherical harmonic approximation
 - Factorization and PCA
 - Local factorization and clustered PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Factored BRDFs
 - Triple Product Integrals

PCA or SVD factorization

• SVD:

• Applying Rank **b**:

• Absorbing **S^j** values into **C^{iT}**:

Idea of Compression

- Represent matrix (rather than light vector) compactly
- Can be (and is) combined with low frequency vector
- Useful in broad contexts.
 - BRDF factorization for real-time rendering (reduce 4D BRDF to 2D texture maps) McCool et al. 01 etc
 - Surface Light field factorization for real-time rendering (4D to 2D maps) Chen et al. 02, Nishino et al. 01
 - Factorization of Orientation Light field for complex lighting and BRDFs (4D to 2D) Latta et al. 02

Not too useful for general precomput. relighting

Transport matrix not low-dimensional!!

Local or Clustered PCA

Exploit local coherence (in say 16x16 pixel blocks)

- Idea: light transport is locally low-dimensional. Why?
- Even though globally complex
- See Mahajan et al. 07 for theoretical analysis
- Original idea: Each triangle separately
 - Example: Surface Light Fields 3D subspace works well
 - Vague analysis of size of triangles
 - Instead of triangle, 16x16 image blocks [Nayar et al. 04]
- Clustered PCA [Sloan et al. 2003]
 - Combines two widely used compression techniques: Vector Quantization or VQ and Principal Component Analysis
 - For complex geometry, no need for parameterization / topology

Practical Case

Human Face

Outline

- Motivation and Background
- Compression methods
 - Low frequency linear spherical harmonic approximation
 - Factorization and PCA
 - Local factorization and clustered PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Factored BRDFs
 - Triple Product Integrals

Sparse Matrix-Vector Multiplication

Choose data representations with mostly zeroes

Vector: Use *non-linear wavelet approximation* on lighting

Haar Wavelet Basis

Non-linear Wavelet Approximation

Wavelets provide dual space / frequency locality

- Large wavelets capture low frequency area lighting
- Small wavelets capture high frequency compact features
- **Non-linear Approximation**
 - Use a dynamic set of approximating functions (depends on each frame's lighting)
 - By contrast, linear approx. uses fixed set of basis functions (like 25 lowest frequency spherical harmonics)
 - We choose 10's 100's from a basis of 24,576 wavelets

Non-linear Wavelet Light Approximation

Wavelet Transform

Non-linear Wavelet Light Approximation

Error in Lighting: St Peter's Basilica

Output Image Comparison

Top:Linear Spherical Harmonic ApproximationBottom:Non-linear Wavelet Approximation

Outline

- Motivation and Background
- Compression methods
 - Low frequency linear spherical harmonic approximation
 - Factorization and PCA
 - Local factorization and clustered PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Factored BRDFs
 - Triple Product Integrals

Changing Only The View

Problem Characterization

6D Precomputation Space

- Distant Lighting (2D)
- View (2D)
- Rigid Geometry (2D)

With ~ 100 samples per dimension ~ 10¹² samples total!! : Intractable computation, rendering

Clustered PCA

- Use low-frequency light and view variation (Order 4 spherical harmonic = 25 for both; total = 25*25=625)
- 625 element vector for each vertex
- Apply CPCA directly (Sloan et al. 2003)
- Does not easily scale to high frequencies
 - Really cubic complexity (number of vertices, illumination directions or harmonics, and view directions or harmonics)
- Practical real-time method on GPU

Factored BRDFs

- Sloan et al. 04, Wang et al. 04: All-frequency effects
- Combines lots of things: BRDF factorization, CPCA, nonlinear approx. with wavelets
- Idea: Factor BRDF to depend on incident, outgoing
 Incident part handled with view-independent relighting
 Then linearly combine based on outgoing factor
- Effectively, break problem into a few subproblems that can be solved view-independently and added up
 - Can apply nonlinear wavelet approx. to each subproblem
 - And CPCA to the matrices for further compression

Factored BRDFs: Critique

- Simple, reasonably practical method
- Problem: Non-optimal factorization, few terms
 - Can only handle less glossy materials
 - Accuracy not properly investigated [Mahajan et al 08]
- Very nice synthesis of many existing ideas
- Comparison to triple product integrals
 - Not as deep or cool, but simpler and real-time
 - Limits BRDF fidelity, glossiness much more
 - In a sense, they are different types of factorizations

Outline

- Motivation and Background
- Compression methods
 - Low frequency linear spherical harmonic approximation
 - Factorization and PCA
 - Local factorization and clustered PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Factored BRDFs
 - Triple Product Integrals

Triple Product Integral Relighting

Relit Images (3-5 sec/frame)

Triple Product Integrals

$$B = \int_{S^2} L(\omega) V(\omega) \tilde{\rho}(\omega) d\omega$$

=
$$\int_{S^2} \left(\sum_i L_i \Psi_i(\omega) \right) \left(\sum_j V_j \Psi_j(\omega) \right) \left(\sum_k \tilde{\rho}_k \Psi_k(\omega) \right) d\omega$$

=
$$\sum_i \sum_j \sum_k L_i V_j \tilde{\rho}_k \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) d\omega$$

=
$$\sum_i \sum_j \sum_k L_i V_j \tilde{\rho}_k C_{ijk}$$

Basis Requirements

$$B = \sum_{i} \sum_{j} \sum_{k} L_{i} V_{j} \tilde{\rho}_{k} C_{ijk}$$

1. Need few non-zero "tripling" coefficients

$$C_{ijk} = \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) \, d\omega$$

2. Need sparse basis coefficients $L_i, V_j, \tilde{\rho}_k$

1. Number of Non-Zero Tripling Coefficients $C_{ijk} = \int_{C^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) \, d\omega$ **Basis Choice** Number Non-Zero General (e.g. PCA) Pixels Fourier Series Sph. Harmonics Haar Wavelets

2. Sparsity in Light Approx.

Summary of Wavelet Results

Derive direct O(N log N) triple product algorithm

Dynamic programming can eliminate log N term

 Final complexity linear in number of retained basis coefficients

Broader Computational Relevance

- Clebsch-Gordan triple product series for spherical harmonics in quantum mechanics (but not focused on computation)
- Essentially no previous work graphics, applied math
- Same machinery applies to basic operation: multiplication
 - Signal multiplication for audio, image compositing,....
 - Compressed signals/videos (e.g. wavelets JPEG 2000)

Summary

- Really a big data compression and signalprocessing problem
- Apply many standard methods
 PCA, wavelet, spherical harmonic, factor compression
- And invent new ones
 - VQPCA, wavelet triple products
- Guided by and gives insights into properties of illumination, reflectance, visibility
 - How many terms enough? How much sparsity?

Subsequent Work

- Varied lighting/view. What about dynamic scenes, BRDFs
 Much subsequent work [Zhou et al. 05, Ben-Artzi et al. 06]. But still limited for dynamic scenes
- Must work on GPU to be practical
- Sampling on object geometry remains a challenge
- Near-Field Lighting has had some work, remains a challenge
- Applications to lighting design, direct to indirect transfer
- New basis functions and theory
- Newer methods do not require precompute, various GPU tricks
- So far, low-frequency spherical harmonics used in games, allfrequency techniques have had limited applicability