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Motivation

 Next week: Image-Based Rendering.  Use measured data   
(real photographs) and interpolate for realistic real-time

 Why not apply to real-time rendering?
 Precompute (offline) some information (images) of interest
 Must assume something about scene is constant to do so
 Thereafter real-time rendering.  Often hardware-accelerated

 Easier and harder than conventional IBR
 Easier because synthetic scenes give info re geometry, 

reflectance (but CG rendering often longer than nature)
 Harder because of more complex effects (lighting from all 

directions for instance, not just changing view)

 Representations and Signal-Processing crucial



General Philosophy

 This general line of work is a large data management 
and signal-processing problem

 Precompute high-dimensional complex data

 Store efficiently (find right mathematical representation)

 Render in real-time
 Worry about systems issues like caching
 Good signal-processing: use only small amount of 

data but guarantee high fidelity

 Many insights into structure of lighting, BRDFs, …
 Not just blind interpolation; signal processing



Precomputation-Based Relighting

 Analyze precomputed images of scene

Jensen 2000



Precomputation-Based Relighting

 Analyze precomputed images of scene

Jensen 2000



Assumptions

 Static geometry 

 Precomputation 

 Real-Time Rendering (relight all-frequency effects)
 Exploit linearity of light transport for this
 Later, change viewpoint as well



Why is This Hard?

 Plain graphics hardware supports only simple (point) 
lights, BRDFs (Phong) without any shadows

 Shadow maps can handle point lights (hard shadows)

 Environment maps complex lighting, BRDFs but no 
shadows

 IBR can often do changing view, fixed lighting

 How to do complex shadows in complex lighting?

 With dynamically changing illumination and view?



Relighting as a Matrix-Vector Multiply
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Relighting as a Matrix-Vector Multiply



Matrix Columns (Images)



Precompute: Ray-Trace Image Cols



Precompute 2: Rasterize Matrix Rows



Problem Definition

Matrix is Enormous 
 512 x 512 pixel images
 6 x 64 x 64 cubemap environments

Full matrix-vector multiplication is intractable
 On the order of 1010 operations per frame

How to relight quickly?



Outline

 Motivation and Background

 Compression methods
 Low frequency linear spherical harmonic 

approximation
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 Triple Product Integrals



Precomputed Radiance Transfer

 Better light integration and 
transport
 dynamic, area lights 
 self-shadowing 
 interreflections

 For diffuse and 
glossy surfaces

 At real-time rates

 Sloan et al. 02 (one of the 
top-cited rendering papers in 
last 15 years, widely used in 
games, movie production: 
Spherical Harmonic Lighting)

point light area light

area lighting,
no shadows

area lighting,
shadows
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Precomputation: Spherical Harmonics



Diffuse Transfer Results

No Shadows/Inter                Shadows                             Shadows+Inter



Arbitrary BRDF Results

Other BRDFs Spatially VaryingAnisotropic BRDFs
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Relighting as a Matrix-Vector Multiply



Idea of Compression

 The vector is projected onto low-frequency 
components (say 25).  Size greatly reduced.

 Hence, only 25 matrix columns

 But each pixel still treated separately (still have
¾ M matrix rows for 512 x 512 image)

 Actually, for each pixel, dot product of matrix row (25 
elems) and lighting vector (25 elems) in hardware

 Good technique (common in games, movies) but 
useful only for broad low-frequency lighting 
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Idea of Compression

 Represent matrix (rather than light vector) compactly

 Can be (and is) combined with low frequency vector

 Useful in broad contexts. 
 BRDF factorization for real-time rendering (reduce 4D BRDF to 

2D texture maps)  McCool et al. 01 etc
 Surface Light field factorization for real-time rendering (4D to 2D 

maps) Chen et al. 02, Nishino et al. 01
 Factorization of Orientation Light field for complex lighting and 

BRDFs (4D to 2D) Latta et al. 02

 Not too useful for general precomput. relighting
 Transport matrix not low-dimensional!!



Local or Clustered PCA

 Exploit local coherence (in say 16x16 pixel blocks)
 Idea: light transport is locally low-dimensional.  Why?
 Even though globally complex
 See Mahajan et al. 07 for theoretical analysis

 Original idea: Each triangle separately
 Example: Surface Light Fields 3D subspace works well
 Vague analysis of size of triangles
 Instead of triangle, 16x16 image blocks [Nayar et al. 04]

 Clustered PCA [Sloan et al. 2003]
 Combines two widely used compression techniques: Vector 

Quantization or VQ and Principal Component Analysis
 For complex geometry, no need for parameterization / topology



Demo (block PCA relighting)
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Sparse Matrix-Vector Multiplication
Choose data representations with mostly zeroes

Vector: Use non-linear wavelet approximation
on lighting 

Matrix:  Wavelet-encode transport rows



Haar Wavelet Basis



Non-linear Wavelet Approximation

Wavelets provide dual space / frequency locality
 Large wavelets capture low frequency area lighting
 Small wavelets capture high frequency  compact features

Non-linear Approximation
 Use a dynamic set of approximating functions (depends 

on each frame’s lighting)
 By contrast, linear approx. uses fixed set of basis 

functions (like 25 lowest frequency spherical harmonics)
 We choose 10’s - 100’s from a basis of 24,576 wavelets



Non-linear Wavelet Light Approximation

Wavelet Transform
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Non-linear
Approximation

Retain 0.1% – 1% terms 

Non-linear Wavelet Light Approximation



Error in Lighting: St Peter’s Basilica
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Ng, Ramamoorthi, Hanrahan 03



Output Image Comparison
Top: Linear Spherical Harmonic Approximation
Bottom: Non-linear Wavelet Approximation

25 200 2,000 20,000



Video
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Changing Only The View



Problem Characterization

6D Precomputation Space

 Distant Lighting (2D)

 View (2D)

 Rigid Geometry (2D)

With ~ 100 samples per dimension
~ 1012 samples total!! : Intractable computation, rendering



Clustered PCA

 Use low-frequency light and view variation (Order 4 
spherical harmonic = 25 for both; total = 25*25=625)

 625 element vector for each vertex

 Apply CPCA directly (Sloan et al. 2003)

 Does not easily scale to high frequencies
 Really cubic complexity (number of vertices, illumination 

directions or harmonics, and view directions or harmonics)

 Practical real-time method on GPU



Factored BRDFs

 Sloan et al. 04, Wang et al. 04: All-frequency effects 

 Combines lots of things: BRDF factorization, CPCA, 
nonlinear approx. with wavelets

 Idea: Factor BRDF to depend on incident, outgoing
 Incident part handled with view-independent relighting
 Then linearly combine based on outgoing factor

 Effectively, break problem into a few subproblems that can 
be solved view-independently and added up
 Can apply nonlinear wavelet approx. to each subproblem
 And CPCA to the matrices for further compression



Factored BRDFs: Critique

 Simple, reasonably practical method

 Problem: Non-optimal factorization, few terms
 Can only handle less glossy materials
 Accuracy not properly investigated [Mahajan et al 08]

 Very nice synthesis of many existing ideas

 Comparison to triple product integrals
 Not as deep or cool, but simpler and real-time
 Limits BRDF fidelity, glossiness much more
 In a sense, they are different types of factorizations
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Factorization Approach
6D Transport

~ 1012 samples

~ 108 samples ~ 108 samples

4D Visibility 4D BRDF
*

=



Triple Product Integral Relighting



Relit Images (3-5 sec/frame)



Triple Product Integrals



Basis Requirements

1. Need few non-zero “tripling” coefficients

2. Need sparse basis coefficients



Basis Choice Number Non-Zero      

General (e.g. PCA) O (N 3)
Pixels O (N)
Fourier Series O (N 2)
Sph. Harmonics O (N 5 / 2)
Haar Wavelets O (N log N)

1. Number of Non-Zero Tripling Coefficients



2.  Sparsity in Light Approx. 
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Summary of Wavelet Results

 Derive direct O(N log N) triple product algorithm

 Dynamic programming can eliminate log N term

 Final complexity linear in number of retained 
basis coefficients



Broader Computational Relevance
 Clebsch-Gordan triple product series for spherical 

harmonics in quantum mechanics (but not focused on 
computation)

 Essentially no previous work graphics, applied math

 Same machinery applies to basic operation: multiplication
 Signal multiplication for audio, image compositing,….
 Compressed signals/videos (e.g. wavelets JPEG 2000)

*=



Summary

 Really a big data compression and signal-
processing problem

 Apply many standard methods
 PCA, wavelet, spherical harmonic, factor compression

 And invent new ones
 VQPCA, wavelet triple products

 Guided by and gives insights into properties of 
illumination, reflectance, visibility
 How many terms enough?  How much sparsity?



Subsequent Work

 Varied lighting/view.  What about dynamic scenes, BRDFs
 Much subsequent work [Zhou et al. 05, Ben-Artzi et al. 06].  

But still limited for dynamic scenes
 Must work on GPU to be practical
 Sampling on object geometry remains a challenge
 Near-Field Lighting has had some work, remains a challenge
 Applications to lighting design, direct to indirect transfer
 New basis functions and theory
 Newer methods do not require precompute, various GPU tricks
 So far, low-frequency spherical harmonics used in games, all-

frequency techniques have had limited applicability
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