Precomputation-Based Rendering

COS 526: Advanced Computer Graphics
Motivation

- Next week: Image-Based Rendering. Use measured data (real photographs) and interpolate for realistic real-time.
- Why not apply to real-time rendering?
 - Precompute (offline) some information (images) of interest
 - Must assume something about scene is constant to do so
 - Thereafter real-time rendering. Often hardware-accelerated.
- Easier and harder than conventional IBR
 - Easier because synthetic scenes give info re geometry, reflectance (but CG rendering often longer than nature)
 - Harder because of more complex effects (lighting from all directions for instance, not just changing view)
- Representations and Signal-Processing crucial.
General Philosophy

- This general line of work is a large data management and signal-processing problem
- Precompute high-dimensional complex data
- Store efficiently (find right mathematical representation)
- Render in real-time
 - Worry about systems issues like caching
 - Good signal-processing: use only small amount of data but guarantee high fidelity
- Many insights into structure of lighting, BRDFs, …
 - Not just blind interpolation; signal processing
Precomputation-Based Relighting

- Analyze precomputed images of scene

Jensen 2000
Precomputation-Based Relighting

- Analyze precomputed images of scene

Jensen 2000
Assumptions

- Static geometry
- Precomputation
- Real-Time Rendering (relight all-frequency effects)
 - Exploit linearity of light transport for this
 - Later, change viewpoint as well
Why is This Hard?

- Plain graphics hardware supports only simple (point) lights, BRDFs (Phong) without any shadows
- Shadow maps can handle point lights (hard shadows)
- Environment maps complex lighting, BRDFs but no shadows
- IBR can often do changing view, fixed lighting

- How to do complex shadows in complex lighting?
- With dynamically changing illumination and view?
Relighting as a Matrix-Vector Multiply

\[\begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ \vdots \\ P_N \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ \vdots \\ L_M \end{bmatrix} \]
Relighting as a Matrix-Vector Multiply

\[
\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM}
\end{bmatrix}
\begin{bmatrix}
P_1 \\
P_2 \\
P_3 \\
\vdots \\
P_N
\end{bmatrix}
=
\begin{bmatrix}
L_1 \\
L_2 \\
\vdots \\
L_M
\end{bmatrix}
\]

Output Image (Pixel Vector)

Input Lighting (Cubemap Vector)

Precomputed Transport Matrix
Matrix Columns (Images)

<table>
<thead>
<tr>
<th></th>
<th>T_{11}</th>
<th>T_{12}</th>
<th>\cdots</th>
<th>T_{1M}</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{21}</td>
<td>T_{22}</td>
<td>\cdots</td>
<td>T_{2M}</td>
<td></td>
</tr>
<tr>
<td>T_{31}</td>
<td>T_{32}</td>
<td>\cdots</td>
<td>T_{3M}</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\ddots</td>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td>T_{N1}</td>
<td>T_{N2}</td>
<td>\cdots</td>
<td>T_{NM}</td>
<td></td>
</tr>
</tbody>
</table>
Precompute: Ray-Trace Image Cols

\[
\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM}
\end{bmatrix}
\]
Precompute 2: Rasterize Matrix Rows

\[
\begin{pmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM}
\end{pmatrix}
\]
Problem Definition

Matrix is Enormous
- 512 x 512 pixel images
- 6 x 64 x 64 cubemap environments

Full matrix-vector multiplication is intractable
- On the order of 10^{10} operations per frame

How to relight quickly?
Outline

- Motivation and Background
- Compression methods
 - Low frequency linear spherical harmonic approximation
 - Factorization and PCA
 - Local factorization and clustered PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Factored BRDFs
 - Triple Product Integrals
Precomputed Radiance Transfer

- Better light integration and transport
 - dynamic, area lights
 - self-shadowing
 - interreflections

- For diffuse and glossy surfaces

- At real-time rates

- Sloan et al. 02 (one of the top-cited rendering papers in last 15 years, widely used in games, movie production: Spherical Harmonic Lighting)
Precomputation: Spherical Harmonics

Basis 16

Basis 17

Basis 18

illuminate
result
Diffuse Transfer Results

No Shadows/Inter Shadows Shadows+Inter
Arbitrary BRDF Results

Anisotropic BRDFs

Other BRDFs

Spatially Varying
Relighting as a Matrix-Vector Multiply

\[
\begin{bmatrix}
 p_1 \\
 p_2 \\
 p_3 \\
 \vdots \\
 p_N
\end{bmatrix}
\begin{bmatrix}
 T_{11} & T_{12} & \cdots & T_{1M} \\
 T_{21} & T_{22} & \cdots & T_{2M} \\
 T_{31} & T_{32} & \cdots & T_{3M} \\
 \vdots & \vdots & \ddots & \vdots \\
 T_{N1} & T_{N2} & \cdots & T_{NM}
\end{bmatrix}
\begin{bmatrix}
 l_1 \\
 l_2 \\
 \vdots \\
 l_M
\end{bmatrix}
\]
Idea of Compression

- The vector is projected onto low-frequency components (say 25). Size greatly reduced.
- Hence, only 25 matrix columns
- But each pixel still treated separately (still have \(\frac{3}{4} M \) matrix rows for 512 x 512 image)
- Actually, for each pixel, dot product of matrix row (25 elems) and lighting vector (25 elems) in hardware
- Good technique (common in games, movies) but useful only for broad low-frequency lighting
Outline

- Motivation and Background
- Compression methods
 - Low frequency linear spherical harmonic approximation
 - Factorization and PCA
 - Local factorization and clustered PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Factored BRDFs
 - Triple Product Integrals
PCA or SVD factorization

- SVD:
 \[\mathbf{I}^j_{p \times n} = \mathbf{E}^j_{p \times p} \mathbf{S}^j_{p \times n} \mathbf{x} \]
 diagonal matrix (singular values)
 \[\mathbf{C}^iT_{n \times n} \]

- Applying Rank \(\mathbf{b} \):
 \[\mathbf{I}^j_{p \times n} = \mathbf{E}^j_{p \times \mathbf{b}} \mathbf{S}^j_{\mathbf{b} \times \mathbf{b}} \mathbf{x} \mathbf{C}^iT_{\mathbf{b} \times \mathbf{n}} \]

- Absorbing \(\mathbf{S}^j \) values into \(\mathbf{C}^iT \):
 \[\mathbf{I}^j_{p \times n} = \mathbf{E}^j_{p \times \mathbf{b}} \mathbf{L}^j_{\mathbf{b} \times \mathbf{n}} \mathbf{x} \]
Idea of Compression

- Represent matrix (rather than light vector) compactly
- Can be (and is) combined with low frequency vector
- Useful in broad contexts.
 - BRDF factorization for real-time rendering (reduce 4D BRDF to 2D texture maps) McCool et al. 01 etc
 - Surface Light field factorization for real-time rendering (4D to 2D maps) Chen et al. 02, Nishino et al. 01
 - Factorization of Orientation Light field for complex lighting and BRDFs (4D to 2D) Latta et al. 02

- Not too useful for general precomput. relighting
 - Transport matrix not low-dimensional!!
Local or Clustered PCA

- Exploit local coherence (in say 16x16 pixel blocks)
 - Idea: light transport is locally low-dimensional. Why?
 - Even though globally complex
 - See Mahajan et al. 07 for theoretical analysis

- Original idea: Each triangle separately
 - Example: Surface Light Fields 3D subspace works well
 - Vague analysis of size of triangles
 - Instead of triangle, 16x16 image blocks [Nayar et al. 04]

- Clustered PCA [Sloan et al. 2003]
 - Combines two widely used compression techniques: Vector Quantization or VQ and Principal Component Analysis
 - For complex geometry, no need for parameterization / topology
Practical Case

Human Face
Outline

- Motivation and Background
- Compression methods
 - Low frequency linear spherical harmonic approximation
 - Factorization and PCA
 - Local factorization and clustered PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Factored BRDFs
 - Triple Product Integrals
Sparse Matrix-Vector Multiplication

Choose data representations with mostly zeroes

Vector: Use *non-linear wavelet approximation* on lighting

Matrix: Wavelet-encode transport rows

\[
\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM}
\end{bmatrix}
\begin{bmatrix}
L_1 \\
L_2 \\
\vdots \\
L_M
\end{bmatrix}
\]
Haar Wavelet Basis
Non-linear Wavelet Approximation

Wavelets provide dual space / frequency locality
- Large wavelets capture low frequency area lighting
- Small wavelets capture high frequency compact features

Non-linear Approximation
- Use a dynamic set of approximating functions (depends on each frame’s lighting)
- By contrast, linear approx. uses fixed set of basis functions (like 25 lowest frequency spherical harmonics)
- We choose 10’s - 100’s from a basis of 24,576 wavelets
Non-linear Wavelet Light Approximation

Wavelet Transform
Non-linear Wavelet Light Approximation

Retain 0.1% – 1% terms
Error in Lighting: St Peter’s Basilica

Graph showing Relative L^2 Error (%) vs Approximation Terms for Sph. Harmonics and Non-linear Wavelets.

Ng, Ramamoorthi, Hanrahan 03
Output Image Comparison

Top: Linear Spherical Harmonic Approximation
Bottom: Non-linear Wavelet Approximation
Outline

- Motivation and Background
- Compression methods
 - Low frequency linear spherical harmonic approximation
 - Factorization and PCA
 - Local factorization and clustered PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Factored BRDFs
 - Triple Product Integrals
Changing Only The View
Problem Characterization

6D Precomputation Space

- Distant Lighting (2D)
- View (2D)
- Rigid Geometry (2D)

With ~ 100 samples per dimension
~ 10^{12} samples total!! : Intractable computation, rendering
Clustered PCA

- Use low-frequency light and view variation (Order 4 spherical harmonic = 25 for both; total = 25*25=625)
- 625 element vector for each vertex
- Apply CPCA directly (Sloan et al. 2003)
- Does not easily scale to high frequencies
 - Really cubic complexity (number of vertices, illumination directions or harmonics, and view directions or harmonics)
- Practical real-time method on GPU
Factored BRDFs

- Sloan et al. 04, Wang et al. 04: All-frequency effects
- Combines lots of things: BRDF factorization, CPCA, nonlinear approx. with wavelets
- Idea: Factor BRDF to depend on incident, outgoing
 - Incident part handled with view-independent relighting
 - Then linearly combine based on outgoing factor
- Effectively, break problem into a few subproblems that can be solved view-independently and added up
 - Can apply nonlinear wavelet approx. to each subproblem
 - And CPCA to the matrices for further compression
Factored BRDFs: Critique

- Simple, reasonably practical method
- Problem: Non-optimal factorization, few terms
 - Can only handle less glossy materials
 - Accuracy not properly investigated [Mahajan et al 08]
- Very nice synthesis of many existing ideas
- Comparison to triple product integrals
 - Not as deep or cool, but simpler and real-time
 - Limits BRDF fidelity, glossiness much more
 - In a sense, they are different types of factorizations
Outline

- Motivation and Background
- Compression methods
 - Low frequency linear spherical harmonic approximation
 - Factorization and PCA
 - Local factorization and clustered PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Factored BRDFs
 - Triple Product Integrals
Factorization Approach

6D Transport

\[\approx 10^{12} \text{ samples} \]

\[\approx 10^8 \text{ samples} \]

\[\ast \]

4D Visibility

\[\approx 10^8 \text{ samples} \]

4D BRDF

\[\approx 10^8 \text{ samples} \]
Triple Product Integral Relighting
Relit Images (3-5 sec/frame)
\[B = \int_{S^2} L(\omega) V(\omega) \tilde{\rho}(\omega) \, d\omega \]
\[= \int_{S^2} \left(\sum_i L_i \Psi_i(\omega) \right) \left(\sum_j V_j \Psi_j(\omega) \right) \left(\sum_k \tilde{\rho}_k \Psi_k(\omega) \right) \, d\omega \]
\[= \sum_i \sum_j \sum_k L_i V_j \tilde{\rho}_k \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) \, d\omega \]
\[= \sum_i \sum_j \sum_k L_i V_j \tilde{\rho}_k C_{ijk} \]
Basis Requirements

\[B = \sum_{i} \sum_{j} \sum_{k} L_i V_j \tilde{\rho}_k C_{ijk} \]

1. Need few non-zero “tripling” coefficients

\[C_{ijk} = \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) \, d\omega \]

2. Need sparse basis coefficients
 \[L_i, \ V_j, \ \tilde{\rho}_k \]
1. Number of Non-Zero Tripling Coefficients

\[C_{ijk} = \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) \, d\omega \]

<table>
<thead>
<tr>
<th>Basis Choice</th>
<th>Number Non-Zero (C_{ijk})</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (e.g. PCA)</td>
<td>(O(N^3))</td>
</tr>
<tr>
<td>Pixels</td>
<td>(O(N))</td>
</tr>
<tr>
<td>Fourier Series</td>
<td>(O(N^2))</td>
</tr>
<tr>
<td>Sph. Harmonics</td>
<td>(O(N^{5/2}))</td>
</tr>
<tr>
<td>Haar Wavelets</td>
<td>(O(N \log N))</td>
</tr>
</tbody>
</table>
2. Sparsity in Light Approx.

Relative L^2 Error (%) vs. Approximation Terms

- Pixels
- Wavelets
Summary of Wavelet Results

- Derive direct $O(N \log N)$ triple product algorithm
- Dynamic programming can eliminate $\log N$ term
- Final complexity linear in number of retained basis coefficients
Broader Computational Relevance

- Clebsch-Gordan triple product series for spherical harmonics in quantum mechanics (but not focused on computation)
- Essentially no previous work graphics, applied math
- Same machinery applies to basic operation: multiplication
 - Signal multiplication for audio, image compositing,….
 - Compressed signals/videos (e.g. wavelets JPEG 2000)
Summary

- Really a big data compression and signal-processing problem

- Apply many standard methods
 - PCA, wavelet, spherical harmonic, factor compression

- And invent new ones
 - VQPCA, wavelet triple products

- Guided by and gives insights into properties of illumination, reflectance, visibility
 - How many terms enough? How much sparsity?
Subsequent Work

- Varied lighting/view. What about dynamic scenes, BRDFs
 - Much subsequent work [Zhou et al. 05, Ben-Artzi et al. 06]. But still limited for dynamic scenes
- Must work on GPU to be practical
- Sampling on object geometry remains a challenge
- Near-Field Lighting has had some work, remains a challenge
- Applications to lighting design, direct to indirect transfer
- New basis functions and theory
- Newer methods do not require precompute, various GPU tricks
- So far, low-frequency spherical harmonics used in games, all-frequency techniques have had limited applicability