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Motivation

 Next week: Image-Based Rendering.  Use measured data   
(real photographs) and interpolate for realistic real-time

 Why not apply to real-time rendering?
 Precompute (offline) some information (images) of interest
 Must assume something about scene is constant to do so
 Thereafter real-time rendering.  Often hardware-accelerated

 Easier and harder than conventional IBR
 Easier because synthetic scenes give info re geometry, 

reflectance (but CG rendering often longer than nature)
 Harder because of more complex effects (lighting from all 

directions for instance, not just changing view)

 Representations and Signal-Processing crucial



General Philosophy

 This general line of work is a large data management 
and signal-processing problem

 Precompute high-dimensional complex data

 Store efficiently (find right mathematical representation)

 Render in real-time
 Worry about systems issues like caching
 Good signal-processing: use only small amount of 

data but guarantee high fidelity

 Many insights into structure of lighting, BRDFs, …
 Not just blind interpolation; signal processing



Precomputation-Based Relighting

 Analyze precomputed images of scene

Jensen 2000
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Assumptions

 Static geometry 

 Precomputation 

 Real-Time Rendering (relight all-frequency effects)
 Exploit linearity of light transport for this
 Later, change viewpoint as well



Why is This Hard?

 Plain graphics hardware supports only simple (point) 
lights, BRDFs (Phong) without any shadows

 Shadow maps can handle point lights (hard shadows)

 Environment maps complex lighting, BRDFs but no 
shadows

 IBR can often do changing view, fixed lighting

 How to do complex shadows in complex lighting?

 With dynamically changing illumination and view?



Relighting as a Matrix-Vector Multiply
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Relighting as a Matrix-Vector Multiply



Matrix Columns (Images)



Precompute: Ray-Trace Image Cols



Precompute 2: Rasterize Matrix Rows



Problem Definition

Matrix is Enormous 
 512 x 512 pixel images
 6 x 64 x 64 cubemap environments

Full matrix-vector multiplication is intractable
 On the order of 1010 operations per frame

How to relight quickly?



Outline

 Motivation and Background

 Compression methods
 Low frequency linear spherical harmonic 

approximation
 Factorization and PCA
 Local factorization and clustered PCA
 Non-linear wavelet approximation

 Changing view as well as lighting
 Clustered PCA
 Factored BRDFs
 Triple Product Integrals



Precomputed Radiance Transfer

 Better light integration and 
transport
 dynamic, area lights 
 self-shadowing 
 interreflections

 For diffuse and 
glossy surfaces

 At real-time rates

 Sloan et al. 02 (one of the 
top-cited rendering papers in 
last 15 years, widely used in 
games, movie production: 
Spherical Harmonic Lighting)

point light area light

area lighting,
no shadows

area lighting,
shadows
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Precomputation: Spherical Harmonics



Diffuse Transfer Results

No Shadows/Inter                Shadows                             Shadows+Inter



Arbitrary BRDF Results

Other BRDFs Spatially VaryingAnisotropic BRDFs
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Relighting as a Matrix-Vector Multiply



Idea of Compression

 The vector is projected onto low-frequency 
components (say 25).  Size greatly reduced.

 Hence, only 25 matrix columns

 But each pixel still treated separately (still have
¾ M matrix rows for 512 x 512 image)

 Actually, for each pixel, dot product of matrix row (25 
elems) and lighting vector (25 elems) in hardware

 Good technique (common in games, movies) but 
useful only for broad low-frequency lighting 
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Idea of Compression

 Represent matrix (rather than light vector) compactly

 Can be (and is) combined with low frequency vector

 Useful in broad contexts. 
 BRDF factorization for real-time rendering (reduce 4D BRDF to 

2D texture maps)  McCool et al. 01 etc
 Surface Light field factorization for real-time rendering (4D to 2D 

maps) Chen et al. 02, Nishino et al. 01
 Factorization of Orientation Light field for complex lighting and 

BRDFs (4D to 2D) Latta et al. 02

 Not too useful for general precomput. relighting
 Transport matrix not low-dimensional!!



Local or Clustered PCA

 Exploit local coherence (in say 16x16 pixel blocks)
 Idea: light transport is locally low-dimensional.  Why?
 Even though globally complex
 See Mahajan et al. 07 for theoretical analysis

 Original idea: Each triangle separately
 Example: Surface Light Fields 3D subspace works well
 Vague analysis of size of triangles
 Instead of triangle, 16x16 image blocks [Nayar et al. 04]

 Clustered PCA [Sloan et al. 2003]
 Combines two widely used compression techniques: Vector 

Quantization or VQ and Principal Component Analysis
 For complex geometry, no need for parameterization / topology



Demo (block PCA relighting)



Outline

 Motivation and Background

 Compression methods
 Low frequency linear spherical harmonic 

approximation
 Factorization and PCA
 Local factorization and clustered PCA
 Non-linear wavelet approximation

 Changing view as well as lighting
 Clustered PCA
 Factored BRDFs
 Triple Product Integrals



Sparse Matrix-Vector Multiplication
Choose data representations with mostly zeroes

Vector: Use non-linear wavelet approximation
on lighting 

Matrix:  Wavelet-encode transport rows



Haar Wavelet Basis



Non-linear Wavelet Approximation

Wavelets provide dual space / frequency locality
 Large wavelets capture low frequency area lighting
 Small wavelets capture high frequency  compact features

Non-linear Approximation
 Use a dynamic set of approximating functions (depends 

on each frame’s lighting)
 By contrast, linear approx. uses fixed set of basis 

functions (like 25 lowest frequency spherical harmonics)
 We choose 10’s - 100’s from a basis of 24,576 wavelets



Non-linear Wavelet Light Approximation

Wavelet Transform
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Non-linear Wavelet Light Approximation



Error in Lighting: St Peter’s Basilica
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Output Image Comparison
Top: Linear Spherical Harmonic Approximation
Bottom: Non-linear Wavelet Approximation

25 200 2,000 20,000



Video
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Changing Only The View



Problem Characterization

6D Precomputation Space

 Distant Lighting (2D)

 View (2D)

 Rigid Geometry (2D)

With ~ 100 samples per dimension
~ 1012 samples total!! : Intractable computation, rendering



Clustered PCA

 Use low-frequency light and view variation (Order 4 
spherical harmonic = 25 for both; total = 25*25=625)

 625 element vector for each vertex

 Apply CPCA directly (Sloan et al. 2003)

 Does not easily scale to high frequencies
 Really cubic complexity (number of vertices, illumination 

directions or harmonics, and view directions or harmonics)

 Practical real-time method on GPU



Factored BRDFs

 Sloan et al. 04, Wang et al. 04: All-frequency effects 

 Combines lots of things: BRDF factorization, CPCA, 
nonlinear approx. with wavelets

 Idea: Factor BRDF to depend on incident, outgoing
 Incident part handled with view-independent relighting
 Then linearly combine based on outgoing factor

 Effectively, break problem into a few subproblems that can 
be solved view-independently and added up
 Can apply nonlinear wavelet approx. to each subproblem
 And CPCA to the matrices for further compression



Factored BRDFs: Critique

 Simple, reasonably practical method

 Problem: Non-optimal factorization, few terms
 Can only handle less glossy materials
 Accuracy not properly investigated [Mahajan et al 08]

 Very nice synthesis of many existing ideas

 Comparison to triple product integrals
 Not as deep or cool, but simpler and real-time
 Limits BRDF fidelity, glossiness much more
 In a sense, they are different types of factorizations
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Factorization Approach
6D Transport

~ 1012 samples

~ 108 samples ~ 108 samples

4D Visibility 4D BRDF
*

=



Triple Product Integral Relighting



Relit Images (3-5 sec/frame)



Triple Product Integrals



Basis Requirements

1. Need few non-zero “tripling” coefficients

2. Need sparse basis coefficients



Basis Choice Number Non-Zero      

General (e.g. PCA) O (N 3)
Pixels O (N)
Fourier Series O (N 2)
Sph. Harmonics O (N 5 / 2)
Haar Wavelets O (N log N)

1. Number of Non-Zero Tripling Coefficients



2.  Sparsity in Light Approx. 
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Summary of Wavelet Results

 Derive direct O(N log N) triple product algorithm

 Dynamic programming can eliminate log N term

 Final complexity linear in number of retained 
basis coefficients



Broader Computational Relevance
 Clebsch-Gordan triple product series for spherical 

harmonics in quantum mechanics (but not focused on 
computation)

 Essentially no previous work graphics, applied math

 Same machinery applies to basic operation: multiplication
 Signal multiplication for audio, image compositing,….
 Compressed signals/videos (e.g. wavelets JPEG 2000)

*=



Summary

 Really a big data compression and signal-
processing problem

 Apply many standard methods
 PCA, wavelet, spherical harmonic, factor compression

 And invent new ones
 VQPCA, wavelet triple products

 Guided by and gives insights into properties of 
illumination, reflectance, visibility
 How many terms enough?  How much sparsity?



Subsequent Work

 Varied lighting/view.  What about dynamic scenes, BRDFs
 Much subsequent work [Zhou et al. 05, Ben-Artzi et al. 06].  

But still limited for dynamic scenes
 Must work on GPU to be practical
 Sampling on object geometry remains a challenge
 Near-Field Lighting has had some work, remains a challenge
 Applications to lighting design, direct to indirect transfer
 New basis functions and theory
 Newer methods do not require precompute, various GPU tricks
 So far, low-frequency spherical harmonics used in games, all-

frequency techniques have had limited applicability
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