COS 526: Advanced Computer Graphics

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

$$L_P = \int_S L(x \to e) dA$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

$$L(x,\vec{w}) = L_e(x,x \to e) + \int_S f_r(x,x' \to x, x \to e) L(x' \to x) V(x,x') G(x,x') dA$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

Herf

$$L(x,\vec{w}) = L_e(x,x \to e) + \int_S f_r(x,x' \to x, x \to e) L(x' \to x) V(x,x') G(x,x') dA$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

$$L_o(x,\vec{w}) = L_e(x,\vec{w}) + \int_{\Omega} f_r(x,\vec{w}',\vec{w}) L_i(x,\vec{w}') (\vec{w}' \bullet \vec{n}) d\vec{w}$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

Debevec

$$L_o(x,\vec{w}) = L_e(x,\vec{w}) + \int_{\Omega} f_r(x,\vec{w}',\vec{w}) L_i(x,\vec{w}') (\vec{w}' \bullet \vec{n}) d\vec{w}$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

$$L_o(x,\vec{w}) = L_e(x,\vec{w}) + \int_{\Omega} f_r(x,\vec{w}',\vec{w}) L_i(x,\vec{w}') (\vec{w}' \bullet \vec{n}) d\vec{w}$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

Jensen

$$L_o(x,\vec{w}) = L_e(x,\vec{w}) + \int_{\Omega} f_r(x,\vec{w}',\vec{w}) L_i(x,\vec{w}') (\vec{w}' \bullet \vec{n}) d\vec{w}$$

- Rendering integrals are difficult to evaluate
 - Multiple dimensions
 - Discontinuities
 - Partial occluders
 - Highlights
 - Caustics
 - Significant energy carried by "rare" paths

Drettakis

- Rendering integrals are difficult to evaluate
 - Multiple dimensions
 - Discontinuities
 - Partial occluders
 - Highlights
 - Caustics
 - Significant energy carried by "rare" paths

Jensen

- Rendering integrals are difficult to evaluate
 - Multiple dimensions
 - Discontinuities
 - Partial occluders
 - Highlights
 - Caustics
 - Significant energy carried by "rare" paths

Heinrich

- Rendering integrals are difficult to evaluate
 - Multiple dimensions
 - Discontinuities
 - Partial occluders
 - Highlights
 - Caustics
 - Significant energy carried by "rare" paths

Outline

- Motivation
- Monte Carlo integration
- Variance reduction techniques
- Monte Carlo path tracing
- Sampling techniques
- Conclusion

Integration in *d* Dimensions?

One option: nested 1-D integration

Evaluate the latter numerically, but each "sample" of g(y) is itself a 1-D integral, done numerically

Integration in *d* Dimensions?

- Midpoint / trapezoid / Simpson's rule in d dimensions?
 - In 1D: (b-a)/h points
 - In 2D: $(b-a)/h^2$ points
 - In general: $O(1/h^d)$ points
- Required # of points grows exponentially with dimension, for a fixed order of method
 - "Curse of dimensionality"
- Other problems, e.g. non-rectangular domains

Rethinking Integration in 1D

We Can Approximate...

$$\int_{0}^{1} f(x) dx = \int_{0}^{1} g(x) dx$$

Or We Can Average

Estimating the Average

$$\int_{0}^{1} f(x)dx \cong \frac{1}{N} \sum_{i=1}^{N} f(x_{i})$$

Other Domains

$$\int_{a}^{b} f(x)dx \cong \frac{b-a}{N} \sum_{i=1}^{N} f(x_{i})$$

$$f(x)$$

$$x=a \quad x=b$$

"Monte Carlo" Integration

- No "exponential explosion" in required number of samples with increase in dimension
- (Some) resistance to badly-behaved functions

Le Grand Casino de Monte-Carlo

- Drawback: can be noisy unless *lots* of paths simulated
- 40 paths per pixel:

- Drawback: can be noisy unless *lots* of paths simulated
- 1200 paths per pixel:

1000 paths/pixel

Outline

- Motivation
- Monte Carlo integration
- Variance reduction techniques
- Monte Carlo path tracing
- Sampling techniques
- Conclusion

Variance

* with a correction of $\sqrt{\frac{N}{N-1}}$ (consult a statistician for details)

Variance decreases as 1/N
Error of E decreases as 1/sqrt(N)

Variance

- Problem: variance decreases with 1/N
 - Increasing # samples removes noise slowly

Variance Reduction Techniques

- Problem: variance decreases with 1/N
 - Increasing # samples removes noise slowly

- Variance reduction:
 - Stratified sampling
 - Importance sampling

Stratified Sampling

Estimate subdomains separately

0	0		0
		•	
•	•	0	0
•	0	•	0
•	0	•	•

Can do this recursively!

Stratified Sampling

This is still unbiased

Stratified Sampling

 Less overall variance if less variance in subdomains

Reducing Variance

- Observation: some paths more important (carry more energy) than others
 - For example, shiny surfaces reflect more light in the ideal "mirror" direction

Idea: put more samples where f(x) is bigger

Importance Sampling

Put more samples where f(x) is bigger

$$\int_{\Omega} f(x)dx = \frac{1}{N} \sum_{i=1}^{N} Y_{i}$$

where
$$Y_i = \frac{f(x_i)}{p(x_i)}$$

and x_i drawn from P(x)

Importance Sampling

This is still unbiased

$$E[Y_i] = \int_{\Omega} Y(x) p(x) dx$$

$$= \int_{\Omega} \frac{f(x)}{p(x)} p(x) dx$$

$$= \int_{\Omega} f(x) dx$$
for all N

Importance Sampling

 Variance depends on choice of p(x):

$$Var(E) = \frac{1}{N} \sum_{n=1}^{N} \left(\frac{f(x_n)}{p(x_n)} \right)^2 - E^2$$

Importance Sampling

• Zero variance if $p(x) \sim f(x)$

$$p(x) = cf(x)$$

$$Y_i = \frac{f(x_i)}{p(x_i)} = \frac{1}{c}$$

$$Var(Y) = 0$$

Less variance with better importance sampling

Effect of Importance Sampling

Less noise at a given number of samples

Uniform random sampling

Importance sampling

• Equivalently, need to simulate fewer paths for some desired limit of noise

Random number generation

True random numbers

http://www.random.org/

10101111 00101011 10111000 11110110 10101010 00110001 01100011 00010001 00000011 00000010 00111111 00010011 00000101 01001100 10000110 11100010 10010100 10000101 10000011 00000100 00111011 10111000 00110000 11001010 00000001 01001110 00011001 00111001

Pseudorandom Numbers

- Deterministic, but have statistical properties resembling true random numbers
- Common approach: each successive pseudorandom number is function of previous

Desirable properties

- Random pattern: Passes statistical tests (e.g., can use chi-squared)
- Long period: As long as possible without repeating
- Efficiency
- Repeatability: Produce same sequence if started with same initial conditions (for debugging!)
- Portability

Linear Congruential Methods

$$x_{n+1} = (ax_n + b) \bmod c$$

Choose constants carefully, e.g.

```
a = 1664525

b = 1013904223

c = 2^{32}
```

- Results in integer in [0, c)
- Simple, efficient, but often unsuitable for MC: e.g. exhibit serial correlations

Problem with LCGs

Lagged Fibonacci Generators

- Takes form $x_n = (x_{n-j} \square x_{n-k})$ mod m, where operation \square is addition, subtraction, or XOR
- Standard choices of (j, k): e.g., (7, 10), (5,17), (6,31), (24,55), (31, 63) with $m = 2^{32}$
- Proper initialization is important and hard
- Built-in correlation!
- Not totally understood in theory (need statistical tests to evaluate)

Seeds

Why?

- Approaches:
 - Ask the user (for debugging)
 - Time of day
 - True random noise: from radio turned to static,
 or thermal noise in a resistor, or...

Seeds

Lava lamps!

FIG. 3

Pseudorandom Numbers

- Most methods provide integers in range [0..c)
- To get floating-point numbers in [0..1), divide integer numbers by c
- To get integers in range [u..v], divide by c/(v-u+1), truncate, and add u
 - Better statistics than using modulo (v–u+1)
 - Only works if u and v small compared to c

Generating Random Points

- Uniform distribution:
 - Use pseudorandom number generator

- Specific probability distribution:
 - Function inversion
 - Rejection

- "Inversion method"
 - Integrate f(x): Cumulative Distribution Function

- "Inversion method"
 - Integrate f(x): Cumulative Distribution Function
 - Invert CDF, apply to uniform random variable

- Specific probability distribution:
 - Function inversion
 - Rejection

- "Rejection method"
 - Generate random (x,y) pairs,y between 0 and max(f(x))

- "Rejection method"
 - Generate random (x,y) pairs,y between 0 and max(f(x))
 - Keep only samples where y < f(x)

Doesn't require cdf: Can use directly for importance sampling.

Example: Computing pi

With Stratified Sampling

Outline

- Motivation
- Monte Carlo integration
- Variance reduction techniques
- Monte Carlo path tracing
- Sampling techniques
- Conclusion

 Integrate radiance for each pixel by sampling paths randomly

Monte Carlo Path Tracer

- For each pixel, repeat *n* times:
 - Choose a ray with p=camera, d=(θ , ϕ) within pixel
 - Pixel color += (1/n) * TracePath(p, d)
- Use stratified sampling to select rays within each pixel

- TracePath(p, d) returns (r,g,b):
 - Trace ray (p, d) to find nearest intersection p'
 - Sample radiance leaving p' towards p

 Can sample radiance however we want, but contribution weighted by 1/probability

$$\int_{\Omega} f(x)dx = \frac{1}{N} \sum_{i=1}^{N} Y_{i}$$
where $Y_{i} = \frac{f(x_{i})}{p(x_{i})}$

- TracePath(p, d) returns (r,g,b):
 - Trace ray (p, d) to find nearest intersection p'
 - If random() < p_{emit} then
 - Emitted:

```
return (1/ p<sub>emit</sub>) * (Le<sub>red</sub>, Le<sub>green</sub>, Le<sub>blue</sub>)
```

• Reflected:

```
generate ray in random direction d'
return (1/(1-p_{emit})) * f_r(d \rightarrow d') * (n \cdot d') * TracePath(p', d')
```

- TracePath(p, d) returns (r,g,b):
 - Trace ray (p, d) to find nearest intersection p'
 - If Le = (0,0,0) then $p_{emit} = 0$ else if $f_r = (0,0,0)$ then $p_{emit} = 1$ else $p_{emit} = .9$
 - If random() < p_{emit} then
 - Emitted:

return (1/
$$p_{emit}$$
) * (Le_{red}, Le_{green}, Le_{blue})

• Reflected:

```
generate ray in random direction d'
return (1/(1-p_{emit})) * f_r(d \rightarrow d') * (n \cdot d') * TracePath(p', d')
```

Reflected case:

- Pick a light source
- Trace a ray towards that light
- Trace a ray anywhere except for that light
 - Rejection sampling
- Divide by probabilities
 - $p_{light} = 1/(\text{solid angle of light})$ for ray to light source
 - (1 the above) for non-light ray

TracePath(p, d) returns (r,g,b):

- Trace ray (p, d) to find nearest intersection p'
- $\begin{array}{ll} & \text{ If Le} = (0,0,0) \text{ then } p_{emit} = 0 \\ & \text{ else if } f_r = (0,0,0) \text{ then } p_{emit} = 1 \\ & \text{ else } p_{emit} = .9 \end{array}$
- If $random() < p_{emit}$ then
 - Emitted:

Reflected:

generate ray in random direction d' towards a light $L_r = (1/2 * p_{light}) * f_r(d \rightarrow d') * (n \cdot d') * TracePath(p', d')$

generate ray in random direction d' not towards the light $L_r += (1/2*(1-p_{light})) * f_r(d \rightarrow d') * (n \cdot d') * TracePath(p', d')$

return
$$(1/(1-p_{emit})) * L_r$$

Reflected Ray Sampling

 Uniform directional sampling: how to generate random ray on hemisphere?

Reflected Ray Sampling

- Option #1: rejection sampling
 - Generate random numbers (x,y,z),
 with x,y,z in -1..1
 - If $x^2+y^2+z^2 > 1$, reject
 - Normalize (x,y,z)
 - If pointing into surface (ray dot n < 0), flip

Reflected Ray Sampling

- Option #2: inversion method
 - In polar coords, density must be proportional to sin θ (remember d(solid angle) = sin $\theta d\theta d\phi$)
 - Integrate, invert \rightarrow cos⁻¹
- So, recipe is
 - Generate ϕ in $0..2\pi$
 - Generate z in 0..1
 - Let $\theta = \cos^{-1} z$
 - $-(x,y,z) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$

- Better than uniform sampling:
 importance sampling
- Because you divide by probability, ideally: probability $\propto f_r * \cos \theta_i$
- [Lafortune, 1994]:

$$f_r(x, \vec{\omega}_i, \vec{\omega}_o) = k_d \frac{1}{\pi} + k_s \frac{n+2}{2\pi} \cos^n \alpha$$

- For cosine-weighted Lambertian:
 - Density = $\cos \theta \sin \theta$
 - Integrate, invert \rightarrow cos⁻¹(sqrt)
- So, recipe is:
 - Generate ϕ in $0..2\pi$
 - Generate z in 0..1
 - Let $\theta = \cos^{-1}(\operatorname{sqrt}(z))$

- Phong BRDF: $f_r \propto \cos^n \alpha$ where α is angle between outgoing ray and ideal mirror direction
- Constant scale = $k_s(n+2)/(2\pi)$
- Ideally we would sample this times $\cos \theta_i$
 - Difficult!
 - Easier to sample BRDF itself, then multiply by cos θ_i
 - That's OK still better than random sampling

- Recipe for sampling specular term:
 - Generate z in 0..1
 - Let $\alpha = \cos^{-1}(z^{1/(n+1)})$
 - Generate ϕ_{α} in $0..2\pi$
- This gives direction w.r.t. ideal mirror direction

- Recipe for combining terms:
 - r = random()
 - If $(r < k_d)$ then
 - d' = sample diffuse direction
 - weight = $1/k_d$
 - else if $(r < k_d + k_s)$ then
 - d' = sample specular direction
 - weight = $1/k_s$
 - else
 - terminate ray

Recap

TracePath(p, d) returns (r,g,b):

- Trace ray (p, d) to find nearest intersection p'
- If Le = (0,0,0) then $p_{emit} = 0$ else if $f_r = (0,0,0)$ then $p_{emit} = 1$ else $p_{emit} = .9$
- If $random() < p_{emit}$ then
 - Emitted:

return
$$(1/p_{emit}) * (Le_{red}, Le_{green}, Le_{blue})$$

Reflected:

generate ray in random direction
$$d'$$
 towards a light $L_r = (1/2 * p_{light}) * f_r(d \rightarrow d') * (n \cdot d') * TracePath(p', d')$

generate ray in random direction d' not towards the light $L_r += (1/2*(1-p_{light}))*f_r(d \rightarrow d')*(n \cdot d')* TracePath(p', d')$

return
$$(1/(1-p_{emit})) * L_r$$

Advantages

- Any type of geometry (procedural, curved, ...)
- Any type of BRDF (specular, glossy, diffuse, ...)
- Samples all types of paths (L(SD)*E)
- Accuracy controlled at pixel level
- Low memory consumption
- Unbiased error appears as noise in final image

Disadvantages

- Slow convergence
- Noise in final image

Big diffuse light source, 20 minutes

1000 paths/pixel

Summary

- Monte Carlo Integration Methods
 - Very general
 - Good for complex functions with high dimensionality
 - Converge slowly (but error appears as noise)
- Conclusion
 - Preferred method for difficult scenes
 - Noise removal (filtering) and irradiance caching (photon maps) used in practice

More Information

Books

- Realistic Ray Tracing, Peter Shirley
- Realistic Image Synthesis Using Photon Mapping, Henrik Wann Jensen

Theses

- Robust Monte Carlo Methods for Light Transport Simulation, Eric Veach
- Mathematical Models and Monte Carlo Methods for Physically Based Rendering, Eric La Fortune

Course Notes

- Mathematical Models for Computer Graphics, Stanford, Fall 1997
- State of the Art in Monte Carlo Methods for Realistic Image Synthesis,
 Course 29, SIGGRAPH 2001