Monte Carlo Path Tracing

COS 526: Advanced Computer Graphics

{ B PRINCETON
UNIVERSITY

Monte Carlo Global Illumination

Rendering = integration
— Antialiasing

— Soft shadows

— Indirect illumination

— Caustics

Monte Carlo Global Illumination

Rendering = integration
— Soft shadows
— Indirect illumination

— Caustics

Surface

Lo = [L(x — e)A

Monte Carlo Global Illumination

Rendering = integration
T Light
— Antialiasing

— Indirect illumination

— Caustics

X

Surface

L(x,w)=L,(X,x—>¢e) +I f (XX = x,x—>e)L(X"—> x)V(x,X)G(x, x")dA

Monte Carlo Global Illumination

Rendering = integration
— Antialiasing

— Indirect illumination

— Caustics

L(X,W) = L(x,x —)+ j f (XX = X, X = e)L(X' = X)V (X, X)G(x, X')dA

Monte Carlo Global Illumination

Rendering = integration

— Antialiasing @ Lioh
ght _
— Soft shadows ,/E
_ ®
— Caustics @ @

L (X,W) = L,(x,W) + j f(XW, W)L (X,W)(W' [)dW
Q

Monte Carlo Global Illumination

Rendering = integration

— Antialiasing

— Soft shadows -

— Caustics | /

L (X,W) = L,(x,W) + j f(XW, W)L (X,W)(W' [)dW
Q

Monte Carlo Global Illumination

Rendering = integration

— Antialiasing

— Soft shadows

— Indirect illumination

L (X W) = L(X,W)+ j f(XW, W)L (X,W)(W') dW
Q

Monte Carlo Global Illumination

* Rendering = integration
— Antialiasing
— Soft shadows
— Indirect illumination

— Caustics

L (X W) = L(X,W)+ j f (W, W)L,(X W) (W @ i) dW
Q

Challenge

Rendering integrals are difficult to evaluate
— Multiple dimensions

— Discontinuities
« Partial occluders
* Highlights
 (Caustics

— Significant energy carried
by “rare” paths

Challenge

» Rendering integrals are difficult to evaluate
— Multiple dimensions

— Discontinuities
« Partial occluders
* Highlights
 (Caustics

— Significant energy carried
by “rare” paths

Challenge

Rendering integrals are difficult to evaluate
— Multiple dimensions

— Discontinuities
« Partial occluders
* Highlights
 (Caustics

— Significant energy carried
by “rare” paths

Challenge

Rendering integrals are difficult to evaluate
— Multiple dimensions

— Discontinuities
« Partial occluders
* Highlights
 (Caustics

— Significant energy carried
by “rare” paths

Outline

Motivation

Variance reduction techniques
Monte Carlo path tracing
Sampling techniques

Conclusion

Integration in d Dimensions?

One option: nested 1-D integration

f(x,y) 4 g(y)

|| £ y)dxdy =[g(y)dy

\<
P11 1rrini

Evaluate the latter numerically, but each “sample” of g(y) is
itself a 1-D integral, done numerically

Integration in d Dimensions?

Midpoint / trapezoid / Simpson’s rule in d dimensions?
— In 1D: (b-a)/h points

— In 2D: (b-a)/h? points

— In general: O(1/h9) points

Required # of points grows exponentially with
dimension, for a fixed order of method

— “Curse of dimensionality”

Other problems, e.g. non-rectangular domains

Rethinking Integration in 1D

jf(x)dx:?

f(x)

Slide courtesy of
Peter Shirley

We Can Approximate...

1

j f (x)dx =j g(x)dx

Or We Can Average

j f(x)dx = E(f (X))

Estimating the Average

J 100023 ()

f(x)

Other Domains

jf(x)dx~—2f(x)

a

“Monte Carlo” Integration

No “exponential explosion” 2 i 2
in required number of samples # oo AR

......

with increase in dimension e

(Some) resistance to <o ¥,
badly-behaved functions T

oL = —— = e

Le Grand Casino de Monte-Carlo

Monte Carlo Path Tracing

Jensen

Monte Carlo Path Tracing

* Drawback: can be
noisy unless lots of
paths simulated

* 40 paths per pixel:

Monte Carlo Path Tracing

* Drawback: can be
noisy unless lots of
paths simulated

* 1200 paths per pixel:

Monte Carlo Path Tracing

1000 paths/pixel

Outline

Motivation

Monte Carlo integration

Monte Carlo path tracing
Sampling techniques

Conclusion

Variance

X }: (b&—aj :Var[f(xi)]

- (b T\Ia)z Var[f (x.)]

*with a correction of /-
(consult a statistician for details)

Variance decreases as 1/N
Error of E decreases as 1/sqrt(N)

Variance

Problem: variance decreases with 1/N

— Increasing # samples removes noise slowly

E(f(x))

Variance Reduction Techniques

Problem: variance decreases with 1/N

— Increasing # samples removes noise slowly

Variance reduction:
— Stratified sampling

— Importance sampling

Stratitied Sampling

Estimate subdomains separately

E(f(x))

Can do this recursively!

Stratitied Sampling

This is still unbiased

£ (f(x))

Stratitied Sampling

| ess overall variance if less variance
in subdomains

Var[E]= ZKZVOIT\IM) Var[f (x)]

. Ivlj
j=1 J

£ ((x))

Total variance minimized when
number of points in each
subvolume M, proportional to
error in MJ-.

Reducing Variance

Observation: some paths more important
(carry more energy) than others

— For example, shiny surfaces reflect more light
in the ideal “mirror” direction

~_

ldea: put more samples where f(x) is bigger

Importance Sampling

Put more samples where f(x) is bigger

[fp0dx =~ ZY

f(X)

p(x;)
and x. drawn from P(x)

E(f(x))

where Y, =

Importance Sampling

This is still unbiased
E[Y;]= Y (<) p(x)dx
Q

E(f(x))

for all N

Importance Sampling

E(f(x))

Variance depends on

choice of p(x):

Var(E) :ile

N

n=1

|

1:()(n))2 . EZ
p(X,)

Importance Sampling

Zero variance if p(x) ~ f(x)

p(x) = cf (X)
f 1
E(f(x)) Yi = pg:; e
Var(Y)=0

Less variance with better
importance sampling

Effect of Importance Sampling

Less noise at a given number of samples

Uniform random sampling Importance sampling

Equivalently, need to simulate fewer paths for

some desired limit of noise

Random number generation

True random numbers

10101111 007101011 10111000 11110110 10707070 00110001 01100011 000TO00T
00000011 00000010 00111111 00010011 00000101 01001100 10000110 11100010
10010100 10000101 10000011 00000100 00111011 101711000 00110000 11001010
11011101 111011117 00100010 10101011 00100110 10101111 00001011 10110100
00011100 00001111 11001001 11001100 01111101 10000100 10111000 01101011
01101011 01111101 11001010 11101110 11101110 00700010 10110100 01001000
11010111 11011011 11100700 01070010 10111107 01011010 01001110 01110000
00100010 11000111 01010000 10110011 01001011 00110001 01011100 TO00T111
11111000 10101011 01011011 01070000 01101111 00011001 00000011 00110000
10000001 00000110 110710011 00011110 11101107 00000011 00100110 01010011
11070111 10010001 10000111 010700710 01101070 00100101 10011111 01000111
10101001 01100001 01010011 01001000 11010110 01111110 11070011 01110110
00000001 01001110 00011001 00111001

http://www.random.org/

Pseudorandom Numbers

Deterministic, but have statistical properties
resembling true random numbers

Common approach: each successive
pseudorandom number is function of previous

Desirable properties

Random pattern: Passes statistical tests
(e.g., can use chi-squared)

Long period: As long as possible without repeating
Efficiency

Repeatability: Produce same sequence if started
with same initial conditions (for debugging!)

Portability

Linear Congruential Methods

X ., =(ax, +b)mod c

Choose constants carefully, e.g.

a = 1664525
b= 1013904223
c = 232

Results in integer in [0, ¢)

Simple, efficient, but often unsuitable for MC:
e.g. exhibit serial correlations

9p)
O
O
-
S
=
&
i
e
O
P
A

19633,

n:

Lagged Fibonacci Generators

Takes form x,, = (x,,; [} x,,) mod m, where
operation [J is addition, subtraction, or XOR

Standard choices of (j, k): e.g., (7, 10), (5,17), (6,31),
(24,55), (31, 63) with m = 232

Proper initialization is important and hard

Built-in correlation!

Not totally understood in theory (need statistical tests
to evaluate)

Why?

Approaches:
— Ask the user (for debugging)
— Time of day

— True random noise: from radio turned to static,
or thermal noise in a resistor, or...

Lava lamps!

s £l

S -
By -
s -
e -
. -
- -
- -
s -~
] -
- -~
B g /f\ A /\ A :
" . "
]
AN —> o\ /%) 1V A%
CAMERA
130
FIG. 3

http://www.google.com/patents/about/5732138 Method_for seeding a pseudo_rand.html?id=o0uOgAAAAEBA]

Pseudorandom Numbers

Most methods provide integers in range [0..c)

To get floating-point numbers in [0..1),

divide integer numbers by c

To get integers in range [u..v], divide by
c/(v—u+1), truncate, and add u

— Better statistics than using modulo (v—u+1)

— Only works if u and v small compared to c

Generating Random Points

Uniform distribution:

— Use pseudorandom number generator

—

Probability

0

Sampling from a non-uniform distribution

Specific probability distribution:
— Function inversion

— Rejection

F(x)

Sampling from a non-uniform distribution

“Inversion method”

— Integrate f(x): Cumulative Distribution Function

f(x) | f(x)dx

Sampling from a non-uniform distribution

“Inversion method”
— Integrate f(x): Cumulative Distribution Function

— Invert CDF, apply to uniform random variable

f(x) | f(x)dx

—_——0-0999—0

Sampling from a non-uniform distribution

Specific probability distribution:
— Function inversion

— Rejection

f(x)

Sampling from a non-uniform distribution

“Rejection method”

— Generate random (x,y) pairs,
y between 0 and max(f(x))

Sampling from a non-uniform distribution

“Rejection method”

— Generate random (x,y) pairs,
y between 0 and max(f(x))

— Keep only samples where y < f(x)

Doesn't require cdf: Can use directly for importance sampling.

Example: Computing pi

ith Stratitied Samplin

Outline

Motivation
Monte Carlo integration

Variance reduction techniques

Sampling techniques

Conclusion

Monte Carlo Path Tracing

Integrate radiance
for each pixel
by sampling paths

randomly

Light

@)

Pixel ?9

/\“

X

—

Monte Carlo Path Tracer

For each pixel, repeat n times:
— Choose a ray with p=camera, d=(0,¢) within pixel
— Pixel color += (1/n) * TracePath(p, d)

Use stratified sampling
to select rays within

each pixel Pixel

VYN N\
/ \X

TracelPath

TracePath(p, d) returns (r,g,b):
— Trace ray (p, d) to find nearest intersection p’

— Sample radiance leaving p’ towards p

Pa d

Can sample radiance however we want, but

contribution weighted by 1/probability

E(f(x))

1 N
jf(x)dx=N§Yi

f(x,)
(X,

where Y, =

TracelPath

TracePath(p, d) returns (r,g,b):
— Trace ray (p, d) to find nearest intersection p’

— If random() < p,,.; then

e Emitted:
return (1/ pemit) * (I—ered/ I—egreen/ l-eblue)

* Reflected:
generate ray in random direction d’

return (1/ (1—pgpi)) * f(d —d”) * (n-d”) * TracePath(p’, d”)

TracelPath

TracePath(p, d) returns (r,g,b):

— Trace ray (p, d) to find nearest intersection p’
— If Le = (0,0,0) then p; = O

else if f. = (0,0,0) then pit = 1

else poie = -9
— If random() < p,,.;; then

e Emitted:
return (1/ pemit) * (Lered/ Legreen/ l—eblue)

* Reflected:
generate ray in random direction d’

return (1/ (1—-pgpi)) * f(d —d”) * (n-d”) * TracePath(p’, d”)

TracelPath

Reflected case:
— Pick a light source
— Trace a ray towards that light

— Trace a ray anywhere except for that light
* Rejection sampling
— Divide by probabilities

* Pigne = 1/(solid angle of light) for ray to light source
* (1 —the above) for non-light ray

TracelPath

TracePath(, d) returns (r,g,b):

Trace ray (p, d) to find nearest intersection p’

- If Le = (0,0,0) then pgiy = O
else if f. = (0,0,0) then pg; = 1
else pemic = -9

— Ifrandom() < peni then

o Emitted:
return (1/ Pemit) * (Leyeq, Legreen/ Lepue)

o Reflected:

generate ray in random direction d” towards a light
L. = (1/2 *p,,-ght) *f(d —>d) * (n-d’) * TracePath(p’, d’)

generate ray in random direction d” not towards the light
L, += (1/2*(1-pjgp)) * fAd —>d") * (n-d") * TracePath(p’, d")

return (1/ (T=pgpi)) * L

r

Reflected Ray Sampling

Uniform directional sampling:
how to generate random ray on hemisphere?

Reflected Ray Sampling

Option #1: rejection sampling

— Generate random numbers (x,y,2),
with x,y,z in =1..1

— If x2+y2+22 > 1, reject

— Normalize (x,y,2)

— If pointing into surface (ray dot n < 0), flip

Reflected Ray Sampling

Option #2: inversion method

— In polar coords, density must be proportional to sin 8
(remember d(solid angle) = sin 6 d&d¢)

— Integrate, invert — cos™
S0, recipe is

— Generate ¢ in 0..21

— Generate z in 0..1

— Let 8= cos'z

— (x,y,z) = (sin @ cos ¢, sin @sin ¢, cos 6)

BRDF Importance Sampling

Better than uniform sampling:
importance sampling

Because you divide by probability, ideally:
probability oc f. * cos 6
[Lafortune, 1994]:

1 n+2

f (X,0,0,)=k, —+k,——C0s" «
T 27T

BRDF Importance Sampling

For cosine-weighted Lambertian:
— Density = cos 0 sin 0

— Integrate, invert — cos'(sqrt)

S0, recipe is:

— Generate ¢ in 0..27

— Generate z in 0..1

— Let & = cos™ (sqrt(2))

BRDF Importance Sampling

Phong BRDF: f, oc cos"a where «a is angle between
outgoing ray and ideal mirror direction

Constant scale = k.(n+2)/(27)

Ideally we would sample this times cos 6

— Difficult!

— Easier to sample BRDF itself, then multiply by cos 6
— That’s OK — still better than random sampling

BRDF Importance Sampling

Recipe for sampling specular term:
— Generate z in 0..1
L Let o = COS-1 (Z1/(n+1))

— Generate ¢, in 0..2n

This gives direction w.r.t. ideal mirror direction

BRDF Importance Sampling

Recipe for combining terms:

— r = random()
— If (r < k) then

» d’ = sample diffuse direction
+ weight = 1/k4

— else if (r < k; + k) then
« d’ = sample specular direction
« weight = 1/k,

— else

* terminate ray

TracePath(p, d) returns (r,g,b):

— Trace ray (p, d) to find nearest intersection p’

— If Le = (0,0,0) then p,,; = O
else if f, = (0,0,0) then pgpiy = 1
else pemit = -9

— If random() < pem;ithen

e Emitted:
return (1/ pemit) * (Lered/ Legreen/ I-eblue)

* Reflected:

generate ray in random direction d” towards a light
L, = (1/2 *pygy) * £{d —>d") * (n-d") * TracePath(p’, d)

generate ray in random direction d” not towards the light
Lo += (1/2*(1-pjgny) * f(d —d") * (n-d") * TracePath(p’, d)

return (1/ (T—pgmir) * L

r

Monte Carlo Path Tracing

Advantages

— Any type of geometry (procedural, curved, ...)
— Any type of BRDF (specular, glossy, diffuse, ...)
— Samples all types of paths (L(SD)*E)

— Accuracy controlled at pixel level

— Low memory consumption

— Unbiased - error appears as noise in final image

Disadvantages

— Slow convergence

— Noise in final image

Monte Carlo Path Tracing

Big diffuse light source, 20 minutes

Monte Carlo Path Tracing

1000 paths/pixel

Summary

Monte Carlo Integration Methods
— Very general
— Good for complex functions with high dimensionality

— Converge slowly (but error appears as noise)

Conclusion
— Preferred method for difficult scenes

— Noise removal (filtering) and
irradiance caching (photon maps)
used in practice

More Information

Books

— Realistic Ray Tracing, Peter Shirley
— Realistic Image Synthesis Using Photon Mapping, Henrik Wann Jensen

Theses

— Robust Monte Carlo Methods for Light Transport Simulation, Eric Veach

— Mathematical Models and Monte Carlo Methods for Physically Based Rendering, Eric La
Fortune

Course Notes

— Mathematical Models for Computer Graphics, Stanford, Fall 1997

— State of the Art in Monte Carlo Methods for Realistic Image Synthesis,
Course 29, SIGGRAPH 2001

	Monte Carlo Path Tracing
	Monte Carlo Global Illumination
	Monte Carlo Global Illumination
	Monte Carlo Global Illumination
	Monte Carlo Global Illumination
	Monte Carlo Global Illumination
	Monte Carlo Global Illumination
	Monte Carlo Global Illumination
	Monte Carlo Global Illumination
	Challenge
	Challenge
	Challenge
	Challenge
	Outline
	Integration in d Dimensions?
	Integration in d Dimensions?
	Rethinking Integration in 1D
	We Can Approximate…
	Or We Can Average
	Estimating the Average
	Other Domains
	“Monte Carlo” Integration
	Monte Carlo Path Tracing
	Monte Carlo Path Tracing
	Monte Carlo Path Tracing
	Monte Carlo Path Tracing
	Outline
	Variance
	Variance
	Variance Reduction Techniques
	Stratified Sampling
	Stratified Sampling
	Stratified Sampling
	Reducing Variance
	Importance Sampling
	Importance Sampling
	Importance Sampling
	Importance Sampling
	Effect of Importance Sampling
	Random number generation
	True random numbers
	Pseudorandom Numbers
	Desirable properties
	Linear Congruential Methods
	Problem with LCGs
	Lagged Fibonacci Generators
	Seeds
	Seeds
	Pseudorandom Numbers
	Generating Random Points
	Sampling from a non-uniform distribution
	Sampling from a non-uniform distribution
	Sampling from a non-uniform distribution
	Sampling from a non-uniform distribution
	Sampling from a non-uniform distribution
	Sampling from a non-uniform distribution
	Example: Computing pi
	With Stratified Sampling
	Outline
	Monte Carlo Path Tracing
	Monte Carlo Path Tracer
	TracePath
	TracePath
	TracePath
	TracePath
	TracePath
	TracePath
	Reflected Ray Sampling
	Reflected Ray Sampling
	Reflected Ray Sampling
	BRDF Importance Sampling
	BRDF Importance Sampling
	BRDF Importance Sampling
	BRDF Importance Sampling
	BRDF Importance Sampling
	Recap
	Monte Carlo Path Tracing
	Monte Carlo Path Tracing
	Monte Carlo Path Tracing
	Summary
	More Information

