Global Illumination

COS 526: Advanced Computer Graphics

Global Illumination

Synthesize image of a 3D scene accounting for all light transport (including indirect illumination)

Ray tracing

+ soft shadows

+ caustics

+ indirect diffuse illumination

Henrik Wann Jensen

Rendering Methods – Path Types

- OpenGL
 - LDE
- Ray tracing
 - LDS*E
- Path tracing
 - -L(D|S)*E
- Radiosity
 - LD*E

OpenGL¹

$$L_o(x', \vec{\omega}') = L_e(x', \vec{\omega}') + \int_{\Omega} f_r(x', \vec{\omega}, \vec{\omega}') L_i(x', \vec{\omega}) (\vec{\omega} \bullet \vec{n}) d\vec{\omega}$$

Assume direct illumination from point lights and ignore visibility

$$L_o(x', \vec{\omega}') = L_e(x', \vec{\omega}') + \sum_{i=1}^{nlights} f_r(x', \vec{\omega}, \vec{\omega}') L_i(x', \vec{\omega}) (\vec{\omega} \bullet \vec{n})$$

Recursive Ray Tracing

$$L_o(x', \vec{\omega}') = L_e(x', \vec{\omega}') + \int_{\Omega} f_r(x', \vec{\omega}, \vec{\omega}') L_i(x', \vec{\omega}) (\vec{\omega} \bullet \vec{n}) d\vec{\omega}$$

Assume only significant indirect illumination due to perfect specular reflection and refraction

$$L_{o}(x', \vec{\omega}') = L_{e}(x', \vec{\omega}') + \sum_{i=1}^{nlights} f_{r}(x', \vec{\omega}, \vec{\omega}') L_{i}(x', \vec{\omega}) (\vec{\omega} \bullet \vec{n}) + specular$$

Distribution Ray Tracing

$$L_o(x',\vec{\omega}') = L_e(x',\vec{\omega}') + \int_{\Omega} f_r(x',\vec{\omega},\vec{\omega}') L_i(x',\vec{\omega}) (\vec{\omega} \bullet \vec{n}) d\vec{\omega}$$

Estimate integral for each reflection by random sampling

Also:

- Depth of field
 - Motion blur
 - etc.

Path Tracing

Path Tracing

Estimate integral for each pixel by sampling paths from the camera

Ray Tracing vs. Path Tracing

Ray tracing

Path tracing

Bidirectional Path Tracing

 Role of source and receiver can be switched, flux does not change

Bidirectional Path Tracing

Tracing From Eye

Tracing from Lights

Bidirectional Path Tracing

Bidirectional Path Tracing

(RenderPark 98)

Summary

- Global illumination
 - Rendering equation
- Overview of solution methods
 - OpenGL
 - Radiosity
 - Ray tracing
 - Distribution ray tracing
 - Path tracing