Light Transport and the Rendering Equation
Course Outline

- 3D Graphics Pipeline

Modeling
(Creating 3D Geometry)

Rendering
(Creating, shading images from geometry, lighting, materials)
Goal

- Synthesize image of a 3D scene accounting for all paths of light transport (including indirect illumination)
Rendering Challenges

• OpenGL and interactive rendering systems typically model *direct illumination*

• Simple ray tracers add *specular interreflection*

• Modeling all light transport through a scene (*global illumination*) requires accounting for:
 – Diffuse interreflection
 – Caustics
 – Volume scattering
 – etc.
Diffuse Interreflection

- Diffuse interreflection, color bleeding [Cornell Box]
Radiosity
Caustics

- Caustics: Focusing through specular surface
Overview of lecture

- *Theory* for all global illumination methods (ray tracing, path tracing, radiosity)

- We derive *Rendering Equation* [Kajiya 86]
 - Major theoretical development in field
 - Unifying framework for all global illumination

- Discuss existing approaches as special cases
Outline

• Reflectance Equation
• Global Illumination
• Rendering Equation
 – As a general Integral Equation and Operator
 – Approximations (Ray Tracing, Radiosity)
 – Surface Parameterization (Standard Form)
Reflection Equation

\[L_r(x, \omega_r) = L_e(x, \omega_r) + L_i(x, \omega_i)f(x, \omega_i, \omega_r)(\omega_i \cdot n) \]

- Reflected Light (Output Image)
- Emission
- Incident Light (from light source)
- BRDF
- Cosine of Incident angle
Reflection Equation

\[L_r(x, \omega_r) = L_e(x, \omega_r) + \sum L_i(x, \omega_i)f(x, \omega_i, \omega_r)(\omega_i \cdot n) \]

- Reflected Light (Output Image)
- Emission
- Incident Light (from light source)
- BRDF
- Cosine of Incident angle

Sum over all light sources
Reflection Equation

\[L_r(x, \omega_r) = L_e(x, \omega_r) + \int_{\Omega} L_i(x, \omega_i) f(x, \omega_i, \omega_r) \cos \theta_i \, d\omega \]

Reflected Light (Output Image) Emission Incident Light (from light source) BRDF Cosine of Incident angle

Replace sum with integral
Environment Maps

- Light as a function of direction, from entire environment
- Captured by photographing a chrome steel or mirror sphere
- Accurate only for one point, but distant lighting same at other scene locations (typically use only one env. map)

Blinn and Newell 1976, Miller and Hoffman, 1984
Later, Greene 86, Cabral et al. 87
Environment Maps

- Environment maps widely used as lighting representation
- Many modern methods deal with offline and real-time rendering with environment maps
- Image-based complex lighting + complex BRDFs
The Challenge

• Computing reflectance equation requires knowing the incoming radiance from surfaces

• But determining incoming radiance requires knowing the reflected radiance from surfaces
Outline

• Reflectance Equation
• Global Illumination
• Rendering Equation
 – As a general Integral Equation and Operator
 – Approximations (Ray Tracing, Radiosity)
 – Surface Parameterization (Standard Form)
Figure 6. A sample image. All objects are neutral grey. Color on the objects is due to caustics from the green glass balls and color bleeding from the base polygon.
Rendering Equation (1)

Compute radiance in outgoing direction by integrating reflections over all incoming directions.

\[
L_o(x', \vec{\omega}') = L_e(x', \vec{\omega}') + \int_{\Omega} f_r(x', \vec{\omega}, \vec{\omega}') L_i(x', \vec{\omega})(\vec{\omega} \cdot \vec{n}) d\vec{\omega}
\]
What is $\vec{\omega}$?

$\vec{\omega}$ is a direction

- 2-dimensional: (ϕ, θ)
What is L?

Radiance = power emitted from a surface in a direction

- Power $d\Phi$ per unit area dA_p per unit solid angle $d\omega$

$L = \frac{d\Phi}{dA_p \ d\omega}$

$A_p = \text{area perpendicular to given direction}$

$L = \frac{d\Phi}{dA \cos \theta \ d\omega}$
Digression – Why Cosine Term?

Foreshortening is by cosine of angle.

Radiance gives energy by *effective* surface area.

\[L = \frac{d\Phi}{dA \cos \theta \, d\vec{\omega}} \]
Digression – What is Solid Angle?

Angle in radians

\[\text{Length } l / \text{Angle } \theta = l/r \]

Solid angle in steradians

\[\text{Area } A / \text{Solid angle } \omega = A/r^2 \]
Digression – Why Radiance?

Radiance doesn’t change with distance
- Therefore it’s the quantity we want to measure in a path tracer

Radiance is proportional to what a sensor (camera, eye) measures.
- Therefore it’s what we want to output
Light is a form of energy
- Measured in Joules (J)

Power: energy per unit time
- Measured in Joules/sec = Watts (W)
- Also called Radiant Flux (Φ)

Radiance:
- Measured in W/m²/sr
Rendering Equation (1) … Again

Compute radiance in outgoing direction by integrating reflections over all incoming directions.

\[L_o(x', \bar{\omega}') = L_e(x', \bar{\omega}') + \int_{\Omega} f_r(x', \bar{\omega}, \bar{\omega}') L_i(x', \bar{\omega})(\bar{\omega} \cdot \bar{n}) d\bar{\omega} \]
What is f_r?

Bidirectional Reflectance Distribution Function (f_r) = fraction of irradiance E_i in incoming direction \vec{w}_i reflected in outgoing direction \vec{w}_o

$$f_r(\omega_i \rightarrow \omega_o) = \frac{L_o(\omega_o)}{E_i(\omega_i)}$$

$$E_i(\omega_i) \equiv L_i(\omega_i) \cos \theta_i d\omega$$

$$f_r(\omega_i \rightarrow \omega_o) \equiv \frac{L_o(\omega_o)}{L_i(\omega_i) \cos \theta_i d\omega_i}$$
What is f_r?

BRDF (f_r) is usually a 4-dimensional function for each of three frequencies:

$$f_r(\theta_i, \phi_i, \theta_o, \phi_o) = \frac{L_o(\theta_o, \phi_o)}{E_i(\theta_i, \phi_i)}$$

BRDF (f_r) is an intrinsic property of a surface material

- Provided as part of material with scene description

Outgoing radiance and incoming irradiance are proportional to one another:

$$dL_o(\vec{\omega}_o) \propto dE_i(\vec{\omega}_i)$$
Rendering Equation (1) … Again

Compute radiance in outgoing direction by integrating reflections over all incoming directions.

\[L_o(x', \omega') = L_e(x', \omega') + \int_{\Omega} f_r(x', \omega, \omega') L_i(x', \omega)(\omega \cdot \hat{n}) d\omega \]
Rendering Equation as Integral Equation

\[L_r(x, \omega_r) = L_e(x, \omega_r) + \int_{\Omega} L_r(x', -\omega_i) f(x, \omega_i, \omega_r) \cos \theta_i d\omega_i \]

- Reflected Light (Output Image)
- Emission
- Reflected Light
- BRDF
- Cosine of Incident angle

UNKNOWN \hspace{1cm} UNKNOWN \hspace{1cm} KNOWN \hspace{1cm} UNKNOWN \hspace{1cm} KNOWN \hspace{1cm} KNOWN

Is a Fredholm Integral Equation of second kind [extensively studied numerically] with canonical form

\[l(u) = e(u) + \int l(v) K(u, v) dv \]

Kernel of equation
Linear Operator Theory

- Linear operators act on functions like matrices act on vectors or discrete representations.

\[h(u) = (M \circ f)(u) \]

M is a linear operator. f and h are functions of u.

- Basic linearity relations hold.

\[M \circ (af + bg) = a(M \circ f) + b(M \circ g) \]

a and b are scalars. f and g are functions.

- Examples include integration and differentiation.

\[(K \circ f)(u) = \int k(u,v)f(v)dv \]

\[(D \circ f)(u) = \frac{\partial f}{\partial u}(u) \]
Linear Operator Equation

\[l(u) = e(u) + \int l(v) K(u, v) \, dv \]

Kernel of equation
Light Transport Operator

\[L = E + KL \]

Can be discretized to a simple matrix equation [or system of simultaneous linear equations] (L, E are vectors, K is the light transport matrix)
Solving the Rendering Equation

- Too hard for analytic solution, numerical methods
- Approximations, that compute different terms, accuracies of the rendering equation
- Two basic approaches are ray tracing, radiosity. More formally, Monte Carlo and Finite Element
- Monte Carlo techniques sample light paths, form statistical estimate (example, path tracing)
- Finite Element methods discretize to matrix equation
Solving the Rendering Equation

- General linear operator solution. Within raytracing:
- General class numerical **Monte Carlo** methods
- Approximate set of all paths of light in scene

\[L = E + KL \]

\[IL - KL = E \]

\[(I - K)L = E \]

\[L = (I - K)^{-1}E \]

Binomial Theorem

\[L = (I + K + K^2 + K^3 + \ldots)E \]

\[L = E + KE + K^2E + K^3E + \ldots \]

Term n corresponds to n bounces of light
Ray Tracing

\[L = E + KE + K^2E + K^3E + \ldots \]

- Emission directly from light sources
- Direct Illumination on surfaces
- Global Illumination (One bounce indirect) [Mirrors, Refraction]
- (Two bounce indirect) [Caustics etc]
Ray Tracing

\[L = E + K^2 E + K^3 E + \ldots \]

- **Emission directly**
 - From light sources

- **Direct Illumination**
 - on surfaces

- **Global Illumination**
 - (One bounce indirect)
 - [Mirrors, Refraction]

 - (Two bounce indirect)
 - [Caustics etc]

OpenGL Shading
Successive Approximation

L_e

$K \circ L_e$

$K \circ K \circ L_e$

$K \circ K \circ K \circ L_e$

L_e

$L_e + K \circ L_e$

$L_e + \cdots K^2 \circ L_e$

$L_e + \cdots K^3 \circ L_e$
Outline

• Reflectance Equation
• Global Illumination
• Rendering Equation
 – As a general Integral Equation and Operator
 – Approximations (Ray Tracing, Radiosity)
 – Surface Parameterization (Standard Form)
Change of Variables

\[L_r(x, \omega_r) = L_e(x, \omega_r) + \int_{\Omega} L_r(x', -\omega_i) f(x, \omega_i, \omega_r) \cos \theta_i \, d\omega_i \]

Integral over angles sometimes insufficient. Write integral in terms of surface radiance only (change of variables)

\[d\omega_i = \frac{dA' \cos \theta_o}{|x - x'|^2} \]
Change of Variables

\[L_r(x, \omega_r) = L_e(x, \omega_r) + \int_{\Omega} L_r(x', -\omega_i) f(x, \omega_i, \omega_r) \cos \theta_i d\omega_i \]

Integral over angles sometimes insufficient. Write integral in terms of surface radiance only (change of variables)

\[L_r(x, \omega_r) = L_e(x, \omega_r) + \int_{\text{all } x' \text{ visible to } x} L_r(x', -\omega_i) f(x, \omega_i, \omega_r) \cos \theta_i \cos \theta_o \frac{dA}{|x - x'|^2} \]

\[d\omega_i = \frac{dA'}{|x - x'|^2} \cos \theta_o \]

\[G(x, x') = G(x', x) = \frac{\cos \theta_i \cos \theta_o}{|x - x'|^2} \]
Rendering Equation: Standard Form

\[L_r(x, \omega_r) = L_e(x, \omega_r) + \int_{\Omega} L_r(x', -\omega_i) f(x, \omega_i, \omega_r) \cos \theta_i d\omega_i \]

Integral over angles sometimes insufficient. Write integral in terms of surface radiance only (change of variables)

\[L_r(x, \omega_r) = L_e(x, \omega_r) + \int \text{all } x' \text{ visible to } x \quad L_r(x', -\omega_i) f(x, \omega_i, \omega_r) \frac{\cos \theta_i \cos \theta_o}{|x - x'|^2} dA' \]

Domain integral awkward. Introduce binary visibility fn \(V \)

\[L_r(x, \omega_r) = L_e(x, \omega_r) + \int \text{all surfaces } x' \quad L_r(x', -\omega_i) f(x, \omega_i, \omega_r) G(x, x') V(x, x') dA' \]

\[d\omega_i = \frac{dA'}{|x - x'|^2} \]

\[G(x, x') = G(x', x) = \frac{\cos \theta_i \cos \theta_o}{|x - x'|^2} \]
Radiosity Equation

\[L_r(x, \omega_r) = L_e(x, \omega_r) + \int_{\text{all surfaces } x'} L_r(x', -\omega_i) f(x, \omega_i, \omega_r) G(x, x') V(x, x') \, dA' \]

Drop angular dependence (diffuse Lambertian surfaces)

\[L_r(x) = L_e(x) + f(x) \int_{\text{s}} L_r(x') G(x, x') V(x, x') \, dA' \]

Change variables to radiosity (B) and albedo (\(\rho \))

\[B(x) = E(x) + \rho(x) \int_{\text{s}} B(x') \frac{G(x, x') V(x, x')}{\pi} \, dA' \]

Expresses conservation of light energy at all points in space
Discretization and Form Factors

\[B(x) = E(x) + \rho(x) \int_{s} B(x') \frac{G(x, x')V(x, x')}{\pi} \, dA' \]

\[B_i = E_i + \rho_i \sum_j B_j F_{j \rightarrow i} \frac{A_j}{A_i} \]

F is the form factor. It is dimensionless and is the fraction of energy leaving the entirety of patch j (multiply by area of j to get total energy) that arrives anywhere in the entirety of patch i (divide by area of i to get energy per unit area or radiosity).
Form Factors

\[A_i F_{i \rightarrow j} = A_j F_{j \rightarrow i} = \frac{\int \int G(x, x') V(x, x')}{\pi} \, dA_i \, dA_j \]

\[G(x, x') = G(x', x) = \frac{\cos \theta_i \cos \theta_o}{|x - x'|^2} \]
What is $V(x,x')G(x, x')$?

Irradiance at x in direction ω as a fraction of radianse leaving x' in direction ω

$$G(x, x') = \frac{\cos \Theta_i \cos \Theta_o}{\|x - x'\|^2}$$

Move surface away from light:
Inverse square law: $E \sim 1/r^2$

Tilt surface away from light:
Cosine law: $E \sim n \cdot l$
Matrix Equation

\[B_i = E_i + \rho_i \sum_j B_j F_{j \rightarrow i} \frac{A_j}{A_i} \]

\[A_i F_{i \rightarrow j} = A_j F_{j \rightarrow i} = \int \int \frac{G(x, x') V(x, x')}{\pi} dA_i dA_j \]

\[B_i = E_i + \rho_i \sum_j B_j F_{i \rightarrow j} \]

\[B_i - \rho_i \sum_j B_j F_{i \rightarrow j} = E_i \]

\[\sum_j M_{ij} B_j = E_i \quad MB = E \quad M_{ij} = I_{ij} - \rho_i F_{i \rightarrow j} \]
Summary

• Theory for all global illumination methods (ray tracing, path tracing, radiosity)

• We derive Rendering Equation [Kajiya 86]
 – Major theoretical development in field
 – Unifying framework for all global illumination

• Discuss existing approaches as special cases