Differential Geometry and Line Drawing

COS 526: Advanced Computer Graphics

How to Describe Shape-Conveying Lines?

• Image-space features

- Object-space features
 - View-independent
 - View-dependent

[Flaxman 1805]

Image-Space Lines

- + Intuitive motivation; well-suited for GPU
- Difficult to stylize

Examples:

- Isophotes (toon-shading boundaries)
- Edges (e.g., [Canny 1986])
- Ridges, valleys of illumination
 [Pearson 1985, Rieger 1997, DeCarlo 2003, Lee 2007, ...]

Image Edges and Extremal Lines

Edges: Local maxima of gradient magnitude, in gradient direction

Ridges/valleys:

Local minima/maxima of intensity, in direction of max Hessian eigenvector

- + Intrinsic properties of shape; can be precomputed
- Under changing view, can be misinterpreted as surface markings

Topo lines: constant altitude

Creases: infinitely sharp folds

[Saito & Takahashi 90]

Ridges and valleys (crest lines)

- Local maxima of curvature
- Sometimes effective, sometimes not

[Thirion 92, Interrante 95, Stylianou 00, Pauly 03, Ohtake 04 ...]

+ Seem to be perceived as conveying shape

- Must be recomputed per frame

Silhouettes:

- Boundaries between object and background

Occluding contours:

- Depth discontinuities
- Surface normal perpendicular to view direction

[Saito & Takahashi 90, Winkenbach & Salesin 94, Markosian et al 97, ...]

Occluding Contours

For any shape: locations of depth discontinuities – View dependent

- Also called "interior and exterior silhouettes"

Occluding Contours

For smooth shapes: points at which $n \cdot v = 0$

There are other lines...

[Flaxman 1805]

[Flaxman 1805]

There are other lines...

Hypothesis: some are "almost contours"

[Flaxman 1805]

Suggestive Contours

"Almost contours":

- Points that become contours in nearby views

contours + suggestive contours

contours

Suggestive Contours: Definition 1

Contours in nearby viewpoints

(not corresponding to contours in closer views)

Suggestive Contours: Definition 2

 $n \cdot v$ not quite zero, but a local minimum (in the projected view direction *w*)

Minima vs. Zero Crossings

Definition 2: Minima of $n \cdot v$

Finding minima is equivalent to: finding zeros of the derivative checking that 2nd derivative is positive

This leads to definition 3.

Derivative of $n \cdot v$ is a form of curvature...

Differential Geometry

Differential Geometry

Many lines based on curvatures

- Second-order differential properties of surface
- For a curve: reciprocal of radius of circle that best approximates it locally

- For a surface: ?

Normal Curvature

Curvature of a normal curve

Curvature on a Surface

Normal curvature varies with direction, but for a smooth surface satisfies

$$\kappa_n = \begin{pmatrix} s & t \end{pmatrix} \begin{pmatrix} e & f \\ f & g \end{pmatrix} \begin{pmatrix} s \\ t \end{pmatrix}$$
$$= \begin{pmatrix} s & t \end{pmatrix} \mathbf{\Pi} \begin{pmatrix} s \\ t \end{pmatrix}$$

for a direction (*s*,*t*) in the tangent plane and a symmetric matrix **II**

Interpretation of **II**

Second-order Taylor-series expansion: $z(x, y) = \frac{1}{2}ex^2 + fxy + \frac{1}{2}gy^2$

"Hessian": second partial derivatives

$$\mathbf{II} = - \begin{pmatrix} \mathbf{s}_{uu} \cdot \mathbf{n} & \mathbf{s}_{uv} \cdot \mathbf{n} \\ \mathbf{s}_{uv} \cdot \mathbf{n} & \mathbf{s}_{vv} \cdot \mathbf{n} \end{pmatrix}$$

Derivatives of normal

$$\mathbf{II} = \begin{pmatrix} \mathbf{n}_{u} \cdot \hat{\mathbf{u}} & \mathbf{n}_{u} \cdot \hat{\mathbf{v}} \\ \mathbf{n}_{v} \cdot \hat{\mathbf{u}} & \mathbf{n}_{v} \cdot \hat{\mathbf{v}} \end{pmatrix}$$

Principal Curvatures and Directions

Can always rotate coordinate system so that **II** is diagonal:

$$\mathbf{I} = \mathbf{R}^{\mathrm{T}} \begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix} \mathbf{R}$$

*κ*₁ and *κ*₂ are principal curvatures, and are minimum and maximum of normal curvature
 Associated directions are principal directions
 Eigenvalues and eigenvectors of **II**

Euler's Formula

This lets us write normal curvature differently:

Gaussian and Mean Curvature

The Gaussian curvature $K = \kappa_1 \kappa_2$ The mean curvature $H = \frac{1}{2} (\kappa_1 + \kappa_2)$ Equal to the determinant and half the trace, respectively, of the curvature matrix

Radial Curvature κ_r

Curvature in projected view direction, *w*:

Suggestive Contours: Definition 3

Points where $\kappa_r = 0$ and $D_w \kappa_r > 0$

Finding Suggestive Contours

Finding κ_r :

$$\kappa_r = \mathbf{II}(\hat{w}, \hat{w})$$

?

Finding $D_w \kappa_r$:

Derivative of Curvature

Just as
$$\mathbf{II} = \begin{pmatrix} \frac{\partial n}{\partial u} & \frac{\partial n}{\partial v} \end{pmatrix}$$
, can define $\mathbf{C} = \begin{pmatrix} \frac{\partial \mathbf{II}}{\partial u} & \frac{\partial \mathbf{II}}{\partial v} \end{pmatrix}$

C is a rank-3 tensor or "cube of numbers"

Symmetric, so 4 unique entries:

$$= \begin{bmatrix} P^{Q} & Q^{S} \\ Q^{S} & S^{T} \end{bmatrix}$$

C

Multiplying by a direction three times gives (scalar) derivative of curvature

Finding Suggestive Contours

Finding κ_r :

$$\kappa_r = \mathbf{II}(\hat{w}, \hat{w})$$

Finding $D_w \kappa_r$: (extra term due to chain rule) $D_{\hat{w}} \kappa_r = \mathbf{C}(\hat{w}, \hat{w}, \hat{w}) + 2K \cot \theta$, where $\kappa_r = 0$

Results...

contours

contours + suggestive contours

Results...

contours

contours + suggestive contours

Results...

contours

contours + suggestive contours
Qualitative Structure

Suggestive contours have two behaviors:

Continuity of Extensions

Suggestive contours line up with contours in the image

Ending contours

Difficult to localize in real images

Algorithms for Extracting Lines

Classes of Algorithms

Image-space:

 Render some scalar field, perform signal processing (thresholding, edge detection, etc.)

Object-space:

- Extract lines directly on surface

Other:

- Alternative representations (e.g. geometry images)
- Also, some graphics hardware tricks

Contours: Image-Space Algorithm

Recall: occluding contours = zeros of $n \cdot v$

Simple algorithm: render $n \cdot v$ as color, apply threshold

- Variant: index into texture based on $n \cdot v$
- More variants: environment map, pixel shader

Line Thickness

Drawback: line thickness varies — Thicker lines in low-curvature regions

Line Thickness Control

Solution #1: mipmap trick

- Load same-width line into each mipmap level

Line Thickness Control

Solution #2: curvature-dependent threshold – Test $n \cdot v < \varepsilon \sqrt{\kappa_r}$

Original

New

Contours: 2nd Image-Space Algorithm

Render depth image, find edges

- Simpler rendering: no normals
- More complex image processing: edge detector vs. thresholding

Contours: Object-Space Algorithm

Main advantage over image-based algorithms: can explicitly stylize lines

Algorithm depends on definition used: edges between front/back-facing triangles vs. zeros of interpolated $n \cdot v$

Contours: Object-Space Algorithm

For first definition: loop over all edges

- Test adjacent faces
- If one frontfacing, one backfacing, draw edge
- Can be done in hardware [McGuire 2004]

Disadvantage: can get self-intersecting paths

- Makes stylization difficult

Contours: Object-Space Algorithm

[Hertzmann 2000]

Second definition: within-face lines

- For each vertex: compute $n \cdot v$
- For each face: if signs not the same, interpolate to find zero crossing within face

Occluding Contours on Meshes

Contours along edges

Contour

Contours within faces

Moving on to Suggestive Contours...

contours

contours + suggestive contours

Definition 1: contours in nearby views Definition 2: local minima of $n \cdot v$ Definition 3: zeros of radial curvature

Definition 1: contours in nearby views \rightarrow search over viewpoints

Definition 2: local minima of $n \cdot v$ \rightarrow image processing to detect minima [DeCarlo 03, Lee 07]

Render diffuse-shaded image

Filter to detect valleys in intensity

Definition 3: zeros of radial curvature \rightarrow object-space curve extraction

Extraction Algorithm

For each view:

- Compute radial curvature κ_r per vertex
- Find zero crossings per-face
- Keep lines with $D_w \kappa_r > 0$

\Rightarrow Need κ_r and $D_w \kappa_r$ for each vertex

Curvature Estimation

Desirable Properties of a Curvature Estimation Algorithm

No degenerate configurations Works on arbitrary meshes: no special cases for holes, etc. Handles tessellations with varying triangle sizes Efficient in time and space – No auxiliary data structures for connectivity

Estimating Normals

Common algorithm for per-vertex normals: (weighted) average of face normals

- No degeneracies or special cases
- Works on arbitrary meshes
- No extra data structures

Simple to extend to curvatures!

Algorithm

- For each face *f*:
 - Estimate \mathbf{II}_{f}
 - For each of the three vertices:

 $\mathbf{II}_{v} += w_{f,v} * \mathbf{II}_{f}$

For each vertex:

- Divide **II** by sum of weights
- If desired, compute eigenstuff

Algorithm

For each vertex:

- Divide **II** by sum of weights
- If desired, compute eigenstuff

Computing Per-Face Curvature

Key: curvature as derivative of normals

$$\mathbf{II}\begin{pmatrix}s\\t\end{pmatrix} = D_{(s,t)}\mathbf{n}$$

Finite differences approximation:

- Know differences of normals along edges
- Solve for elements of **II**

Computing Per-Face Curvature

6 equations (2 redundant), 3 unknowns: solve using least squares

Algorithm

For each face *f*:

- Estimate \mathbf{II}_{f}
- For each of the three vertices:

 $\mathbf{II}_{v} + = \mathbf{W}_{f,v} * \mathbf{II}_{f}$

For each vertex:

What weights?

- Divide **II** by sum of weights
- If desired, compute eigenstuff

Voronoi Weighting

$w_{f,v}$ = area of the part of *f* closest to *v*

Algorithm

For each face *f*:

- Estimate \mathbf{II}_{f}
- For each of the three vertices:

 $\mathbf{II}_{v} + = W_{f,v} * \mathbf{II}_{f} \leftarrow$

Change of coordinates

For each vertex:

- Divide **II** by sum of weights
- If desired, compute eigenstuff

Change of Coordinates

If old and new coordinates are coplanar:

$$\mathbf{II}_{new} = \mathbf{R}^{\mathrm{T}} \mathbf{II}_{old} \mathbf{R}$$

Change of Coordinates

If old and new coordinates are coplanar:

$$\mathbf{\Pi}_{new} = \mathbf{R}^{\mathrm{T}} \mathbf{\Pi}_{old} \mathbf{R}$$

If not coplanar:

- Can't just project onto plane: would "lose" curvature
- Instead: rotate around cross product of normals

Derivative of Curvature

Just as

$$\mathbf{\Pi}\begin{pmatrix}s\\t\end{pmatrix} = D_{(s,t)}\mathbf{n}$$

gives derivative of the normal,

$$\mathbf{C}\binom{s}{t} = D_{(s,t)}\mathbf{I}$$

gives derivative of curvature

Generalized Algorithm

Compute **II** per vertex

For each face *f*:

– Estimate \mathbf{C}_f from **II** at vertices

- For each of the three vertices: $\mathbf{C}_{v} + = w_{f,v} * \mathbf{C}_{f}$

For each vertex:

– Divide C by sum of weights

Suggestive Contour Implementation

Precompute **II** and C per vertex Finding κ_r :

$$\kappa_r = w^{\mathrm{T}} \mathbf{\Pi} w$$

Finding $D_w \kappa_r$: (extra term due to chain rule)

$$D_{w}\kappa_{r} = \mathbf{C}(w, w, w) + 2K\cot\theta,$$

where $\kappa_{r} = 0, \ \theta = \cos^{-1}(n \cdot v)$

Suggestive Contours as Zeros of κ_r

Mesh

 $\kappa_r = 0$
Suggestive Contours as Zeros of κ_r

$$\kappa_r = 0$$

Reject if $D_w \kappa_r < 0$

Suggestive Contours as Zeros of κ_r

Reject if $D_w \kappa_r < 0$

Suggestive contours