Subdivision Surfaces

COS 526: Advanced Computer Graphics

Slide credits: Denis Zorin, Peter Schröder, Ravi Ramamoorthi

Video: Geri's Game

Subdivision Surfaces

- Coarse mesh & subdivision rule
 - Smooth surface = limit of sequence of refinements

Key Questions

- How to refine mesh? ("Topology")
- Where to place new vertices? ("Geometry")

• How refine mesh?

 Refine each triangle into 4 triangles by splitting each edge and connecting new vertices

- Where to place new vertices?
 - Choose locations for new vertices as weighted average of original vertices in local neighborhood

- Where to place new vertices?
 - Rules for extraordinary vertices and boundaries:

Choose β by analyzing continuity of limit surface

Original Loop

$$\beta = \frac{1}{n} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{n} \right)^2 \right)$$

$$\beta = \begin{cases} \frac{3}{8n} & n > 3\\ \frac{3}{16} & n = 3 \end{cases}$$

Butterfly Subdivision

• Interpolating subdivision: larger neighborhood

Modified Butterfly Subdivision

Need special weights near extraordinary vertices

- For n = 3, weights are $\frac{5}{12}$, $\frac{-1}{12}$, $\frac{-1}{12}$, $\frac{-1}{12}$
- For n = 4, weights are 3/8, 0, -1/8, 0
- For $n \ge 5$, weights are

$$\frac{1}{n}\left(\frac{1}{4}+\cos\frac{2\pi j}{n}+\frac{1}{2}\cos\frac{4\pi j}{n}\right), j=0..n-2$$

– Weight of extraordinary vertex = $1 - \Sigma$ other weights

A Variety of Subdivision Schemes

- Triangles vs. Quads
- Interpolating vs. approximating

Face split		
	Triangular meshes	Quad. meshes
Approximating	$Loop(C^2)$	Catmull-Clark (C^2)
Interpolating	Mod. Butterfly (C^1)	Kobbelt (C^1)

Vertex split		
Doo-Sabin, Midedge (C^1)		
Biquartic (C^2)		

More Exotic Methods

• Kobbelt's subdivision:

More Exotic Methods

• Kobbelt's subdivision:

 Number of faces triples per iteration: gives finer control over polygon count

Subdivision Schemes

Subdivision Schemes

Analyzing Subdivision Schemes

• Limit surface has provable smoothness properties

Analyzing Subdivision Schemes

• Start with curves: 4-point interpolating scheme

(old points left where they are)

4-Point Scheme

• What is the *support*?

So, 5 new points depend on 5 old points

Subdivision Matrix

• How are vertices in neighborhood refined? (with vertex renumbering like in last slide)

Subdivision Matrix

 How are vertices in neighborhood refined? (with vertex renumbering like in last slide)

$$\vec{\mathbf{V}}^{(i+1)} = \mathbf{S}\vec{\mathbf{V}}^{(i)}$$

After *n* rounds:

Convergence Criterion

$$\vec{\mathbf{V}}^{(n)} = \mathbf{S}^n \vec{\mathbf{V}}^{(0)}$$

Expand in eigenvectors of **S**:

$$\mathbf{S} = \sum_{i=0}^{4} \lambda_i \mathbf{e}_i \mathbf{e}_i^T$$
$$\vec{\mathbf{V}}^{(0)} = \sum_{i=0}^{4} a_i \mathbf{e}_i$$
$$\vec{\mathbf{V}}^{(n)} = \sum_{i=0}^{4} a_i \lambda_i^n \mathbf{e}_i$$

Criterion I: $|\lambda_i| \leq 1$

Convergence Criterion

- What if all eigenvalues of **S** are < 1?
 - All points converge to 0 with repeated subdivision

Criterion II: $\lambda_0 = 1$

Translation Invariance

• For any translation *t*, want:

Criterion III: $\mathbf{e}_0 = 1$, all other $|\boldsymbol{\lambda}_i| < 1$

Smoothness Criterion

Plug back in:

$$\vec{\mathbf{V}}^{(n)} = \boldsymbol{a}_{0} \boldsymbol{e}_{0} + \sum_{i=1}^{4} \boldsymbol{a}_{i} \boldsymbol{\lambda}_{i}^{n} \boldsymbol{e}_{i}$$

• Dominated by largest λ_i

• Case 1:
$$|\lambda_1| > |\lambda_2|$$

$$\vec{\mathbf{V}}^{(n)} = a_0 \mathbf{e}_0 + a_1 \lambda_1^n \mathbf{e}_1 + (small)$$

- Group of 5 points gets shorter
- All points approach multiples of $\mathbf{e}_1 \rightarrow$ on a straight line
- Smooth!

Smoothness Criterion

- Case 2: $|\lambda_1| = |\lambda_2|$
 - Points can be anywhere in space spanned by \mathbf{e}_1 , \mathbf{e}_2
 - No longer have smoothness guarantee

Criterion IV: Smooth iff $\lambda_0 = 1 > |\lambda_1| > |\lambda_i|$

Continuity and Smoothness

- So, what about 4-point scheme?
 - Eigenvalues = 1, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{8}$
 - $e_0 = 1$
 - Stable 🗸
 - Translation invariant \checkmark
 - Smooth 🗸

2-Point Scheme

• In contrast, consider 2-point interpolating scheme

- Support = 3
- Subdivision matrix =

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Continuity of 2-Point Scheme

- Eigenvalues = 1, 1/2, 1/2
- $e_0 = 1$
- Stable 🗸
- Translation invariant \checkmark
- Smooth X
 - Not smooth; in fact, this is piecewise linear

2-Point Approximating Scheme

Now consider 2-point approximating scheme

- Support = 2
- Subdivision matrix = $\begin{pmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{pmatrix}$

Continuity of 2-Point Approximating Scheme

- Eigenvalues = 1, $1/_2$
- $e_0 = 1$
- Stable 🗸
- Translation invariant \checkmark
- Smooth 🗸
 - This is equivalent to 2nd order B spline

For Surfaces...

- Similar analysis: determine support, construct subdivision matrix, find eigenstuff
 - Caveat 1: separate analysis for each vertex valence
 - Caveat 2: consider more than 1 subdominant eigenvalue

Reif's smoothness condition: $\lambda_0 = 1 > |\lambda_1| \ge |\lambda_2| > |\lambda_i|$

- Points lie in subspace spanned by e₁ and e₂
 - If $|\lambda_1| \neq |\lambda_2|$, neighborhood stretched when subdivided, but remains 2-manifold

Fun with Subdivision Methods

Behavior of surfaces depends on eigenvalues

(recall that symmetric matrices have real eigenvalues)

Summary

- Advantages:
 - Simple method for describing complex, smooth surfaces
 - Relatively easy to implement
 - Arbitrary topology
 - Local support
 - Guaranteed continuity
 - Multiresolution
- Difficulties:
 - Intuitive specification
 - Parameterization
 - Intersections

