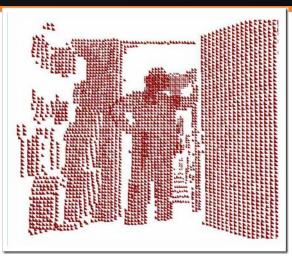
3D Surface Reconstruction

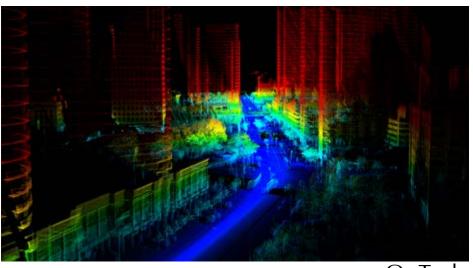
COS 526: Advanced Computer Graphics

Acquired 3D Data

Absolute Geometries



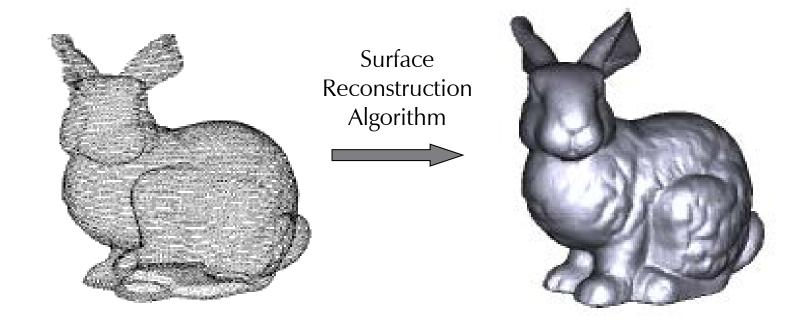
Greg Duncan



OpTech

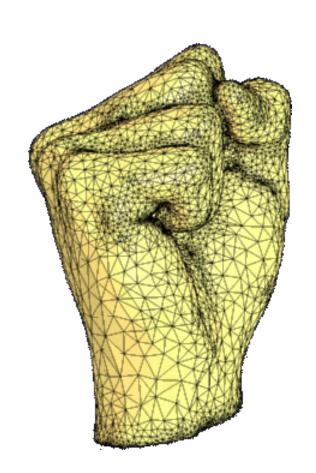
Problem Statement

 Given a set of sample points in three dimensions produce a surface that captures the "most reasonable shape" the points were sampled from.



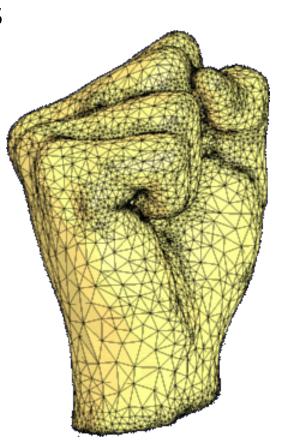
Applications

- Computer graphics,
- Medical imaging
- Cartography
- Compression
- Reverse engineering
- Urban modeling
- etc.

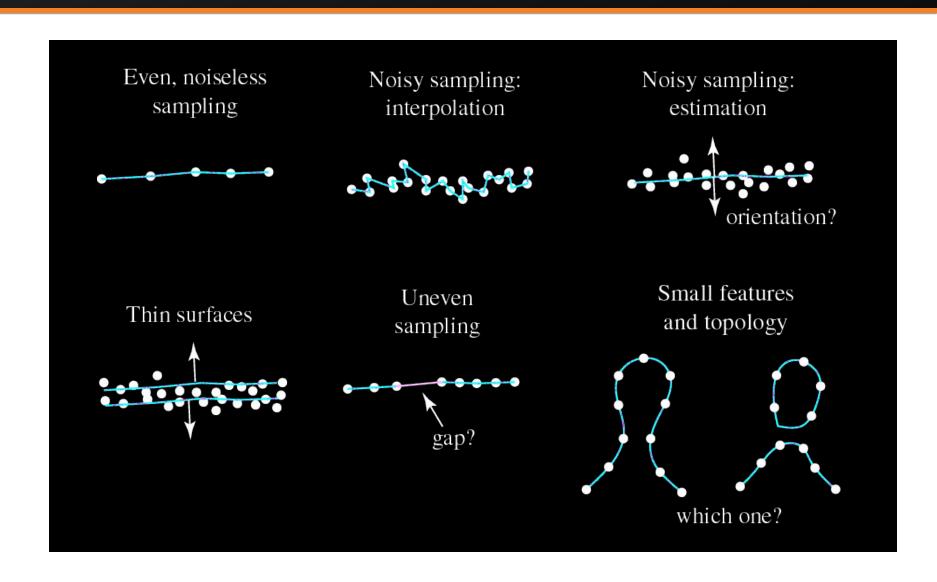


Desirable Properties

- Interpolate (?) input points
- Handle arbitrary genus
- Generally smooth
- Retain sharp features
- Watertight surface

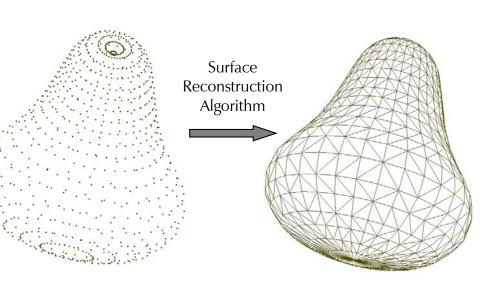


Challenges



Possible Approaches

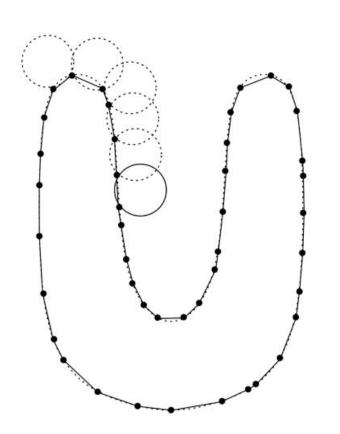
- Explicit Meshing
 - Ball pivoting algorithm
 - Crust
 - etc.
- Implicit Reconstruction
 - Hoppe's algorithm
 - Moving Least Squares (MLS)
 - Poisson surface reconstruction
 - etc.
- Surface fitting
 - Deformable templates
 - etc.

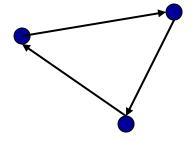


Possible Approaches

- Explicit Meshing
 - Ball pivoting algorithm
 - Crust
 - etc.
- Implicit Reconstruction
 - Hoppe's algorithm
 - Moving Least Squares (MLS)
 - Poisson surface reconstruction
 - etc.
- Surface fitting
 - Deformable templates
 - etc.

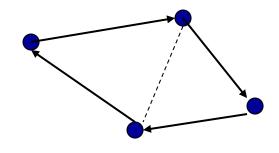
 Pick a ball radius, roll ball around surface, connect what it hits





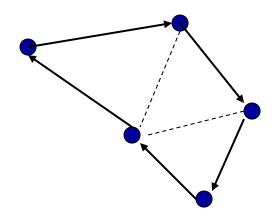
Initial seed triangle

Active edge



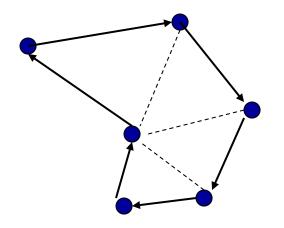
Ball pivoting around active edge

Active edge



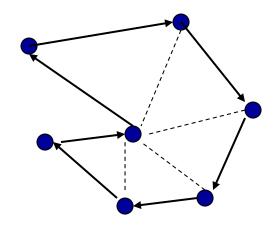
Ball pivoting around active edge

Active edge



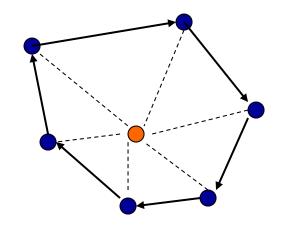
Ball pivoting around active edge

Active edge



Ball pivoting around active edge

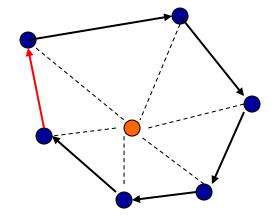
Active edge



Ball pivoting around active edge

- Point on front
- Internal point

Boundary edge

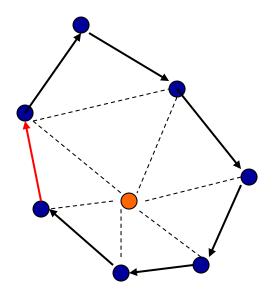


Ball pivoting around active edge

No pivot found

- Point on front
- Internal point

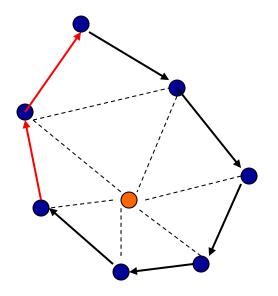
Boundary edge



Ball pivoting around active edge

- Point on front
- Internal point

Boundary edge

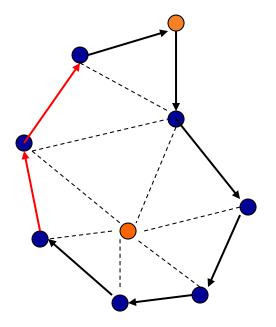


Ball pivoting around active edge

No pivot found

- Point on front
- Internal point

Boundary edge



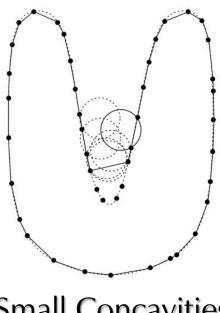
Ball pivoting around active edge

- Point on front
- Internal point

Possible problems?

Possible problems?

Undersampling



Small Concavities

Possible problems?

Self-intersection? Watertight?

Possible Approaches

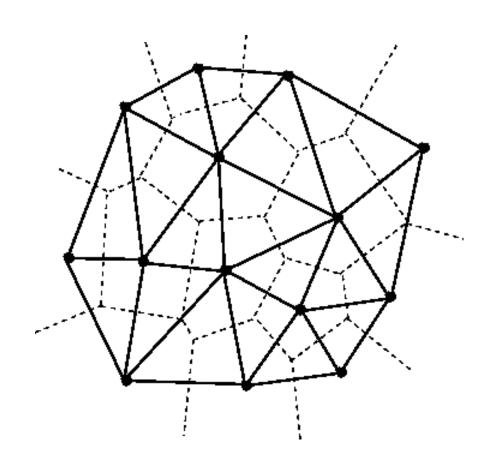
- Explicit Meshing
 - Ball pivoting algorithm
 - Crust
 - etc.
- Implicit Reconstruction
 - Hoppe's algorithm
 - Moving Least Squares (MLS)
 - Poisson surface reconstruction
 - etc.
- Surface fitting
 - Deformable templates
 - etc.

Crust

Aims to find adjacent surface without a parameter specifying feature sizes

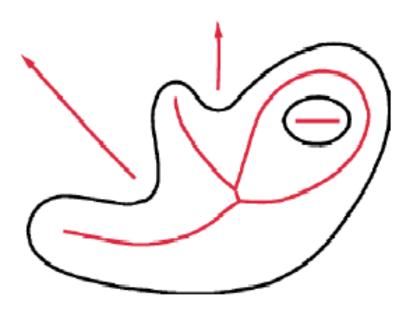
Definitions

Delaunay Triangulation, Voronoi Diagram



Definitions

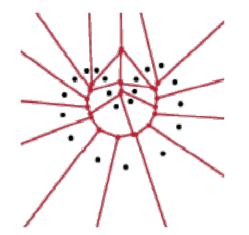
Medial Axis: of surface F is the closure of points that have more than one closest point in F.



The Intuition behind Crust

The Voronoi Cells of a dense sampling are thin and long.

The Medial Axis is the extension of Voronoi Diagram for continuous surfaces in the sense that the Voronoi Diagram of S Can be defined as the set of points with more than one closest point in S. (S = Sample Point Set)



Crust in 2D

Input: P = Set of sample points in the plane Output: E = Set of edges connecting points in P

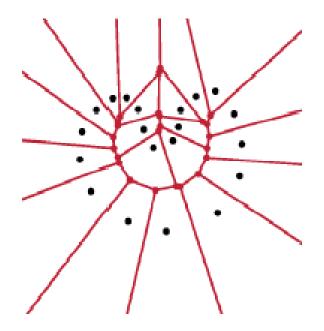
The Algorithm

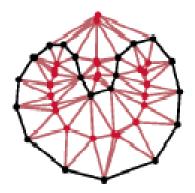
Compute V = the Voronoi vertices of P

Calculate the Delaunay of (P U V)

Pick the edges (p,q) where both p,q are in P

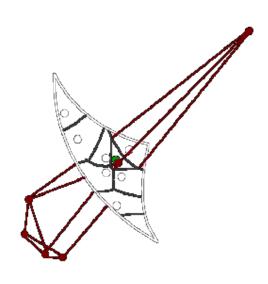
Sample Output

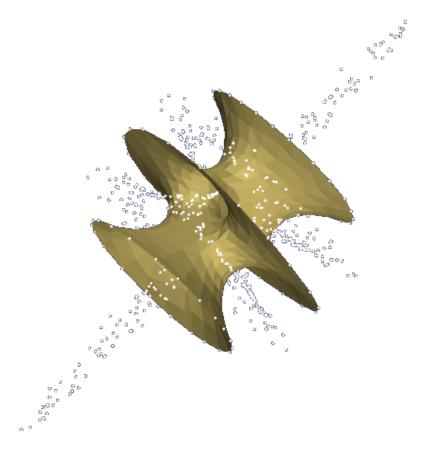


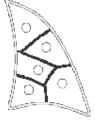


Crust in 3D

- Some Voronoi vertices lie neither near the surface nor near the medial axis
- Keep the "poles"



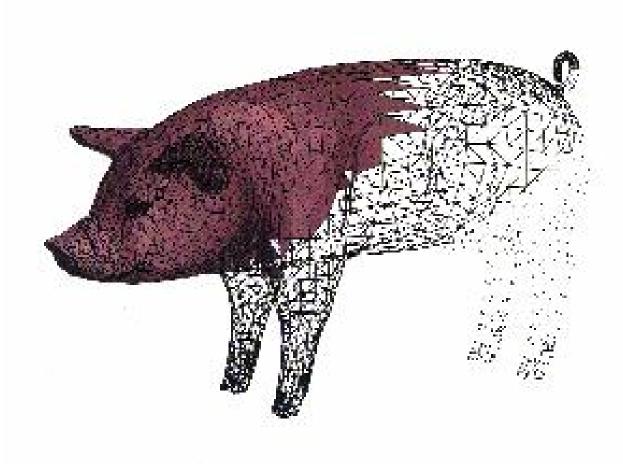




Crust in 3D

- Compute the 3D Voronoi diagram of the sample points.
- For each sample point s, pick the farthest vertex v of its Voronoi cell, and the farthest vertex v' such that angle vsv' exceeds 90 degrees.
- Compute the Voronoi diagram of the sample points and the "poles", the Voronoi vertices chosen in the second step.
- Add a triangle on each triple of sample points with neighboring cells in the second Voronoi diagram.

Sample Output



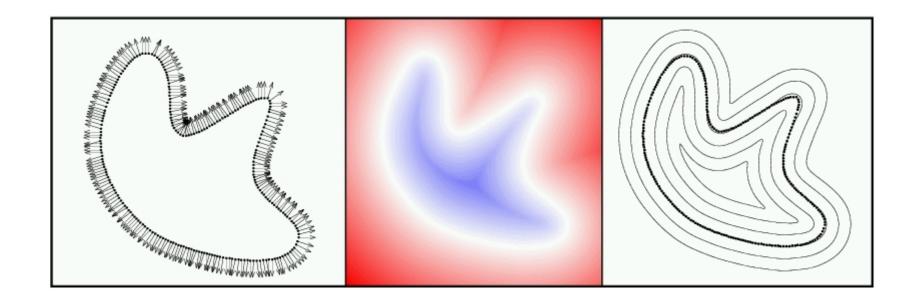
Possible Approaches

- Explicit Meshing
 - Ball pivoting algorithm
 - Crust
 - etc.
- Implicit Reconstruction
 - Hoppe's algorithm
 - Moving Least Squares (MLS)
 - Poisson surface reconstruction
 - etc.
- Surface fitting
 - Deformable templates
 - etc.

Implicit Reconstruction

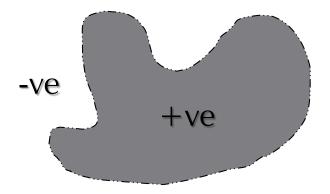
• Main idea:

- Compute an implicit function f(p) (negative outside, positive inside)
- Extract surface where f(p)=0



Hoppe et al's Algorithm

- Tangent Plane Estimation
- Consistent tangent plane orientation
- Signed distance function computation
- Surface extraction



Tangent Plane Estimation

- Principal Component Analysis (PCA)
 - Extract points {q_i} in neighborhood
 - Compute covariance matrix M
 - Analyze eigenvalues and eigenvectors of M (via SVD)

$$\mathbf{M} = \frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix} q_{i}^{x} q_{i}^{x} & q_{i}^{x} q_{i}^{y} & q_{i}^{x} q_{i}^{z} \\ q_{i}^{y} q_{i}^{x} & q_{i}^{y} q_{i}^{y} & q_{i}^{y} q_{i}^{z} \\ q_{i}^{z} q_{i}^{x} & q_{i}^{z} q_{i}^{y} & q_{i}^{z} q_{i}^{z} \end{bmatrix}$$

Covariance Matrix

$$\mathbf{M} = \mathbf{U}\mathbf{S}\mathbf{U}^{t}$$

$$\mathbf{S} = \begin{bmatrix} \lambda_a & 0 & 0 \\ 0 & \lambda_b & 0 \\ 0 & 0 & \lambda_c \end{bmatrix} \quad \mathbf{U} = \begin{bmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{bmatrix}$$

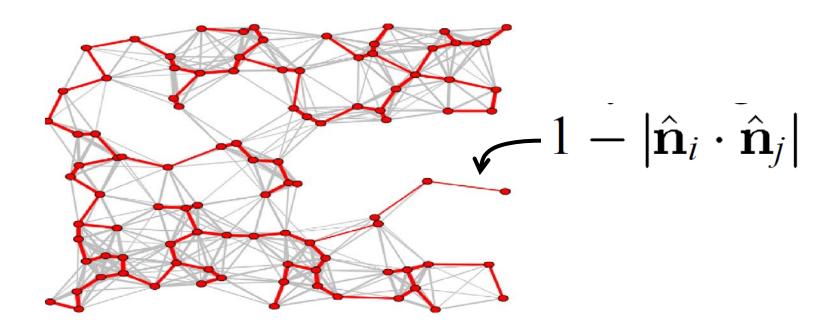
Eigenvalues & Eigenvectors

Tangent Plane Estimation

• Surface normal is estimated by eigenvector (principal axis) associated with smallest eigenvalue

Consistent Tangent Plane Orientation

- Traverse nearest neighbor graph, flipping normals for consistency
 - Greedy propagation algorithm
 (minimum spanning tree of normal similarity)



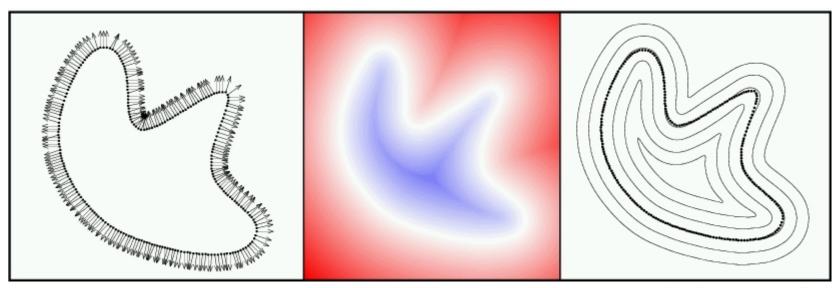
Signed Distance Function

 f(p) is signed distance to tangent plane of closest point sample

```
{ Compute \mathbf{z} as the projection of \mathbf{p} onto Tp(\mathbf{x}_i) } \mathbf{z} \leftarrow \mathbf{o}_i - ((\mathbf{p} - \mathbf{o}_i) \cdot \hat{\mathbf{n}}_i) \hat{\mathbf{n}}_i if d(\mathbf{z}, X) < \rho + \delta then f(\mathbf{p}) \leftarrow (\mathbf{p} - \mathbf{o}_i) \cdot \hat{\mathbf{n}}_i \{ = \pm ||\mathbf{p} - \mathbf{z}|| \} else f(\mathbf{p}) \leftarrow \mathbf{undefined} endif
```

Signed Distance Function

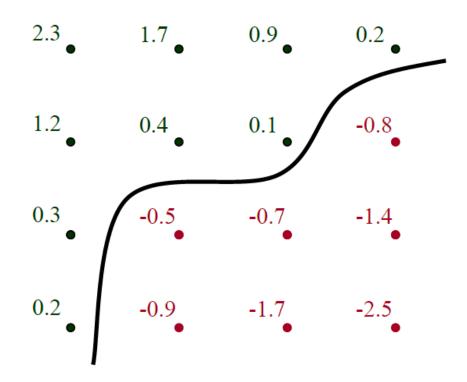
 f(p) is signed distance to tangent plane of closest point sample



Ravikrishna Bvs Kolluri

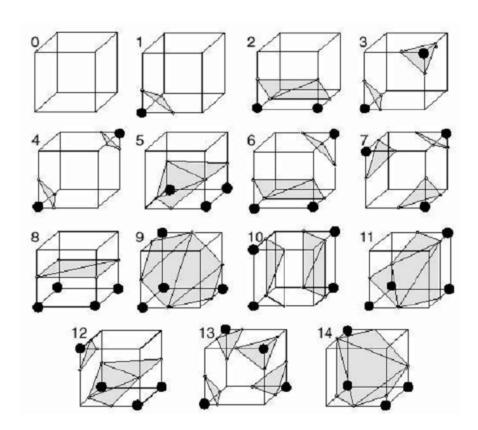
Surface Extraction

- Extract triangulated surface where f(p)=0
 - e.g., Marching Cubes

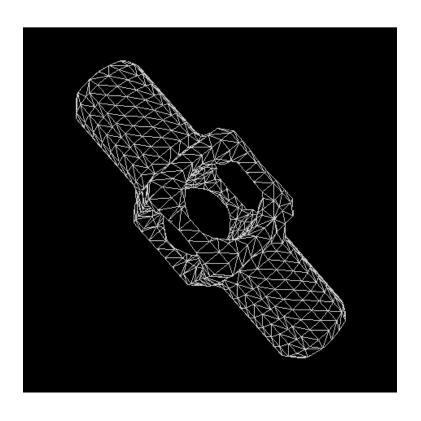


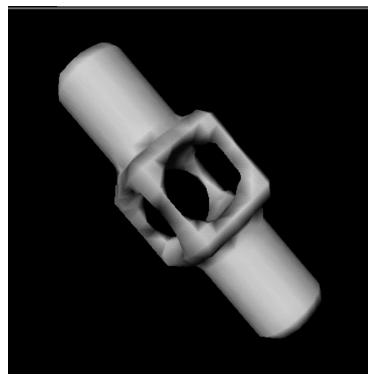
Surface Extraction

- Extract triangulated surface where f(p)=0
 - e.g., Marching Cubes

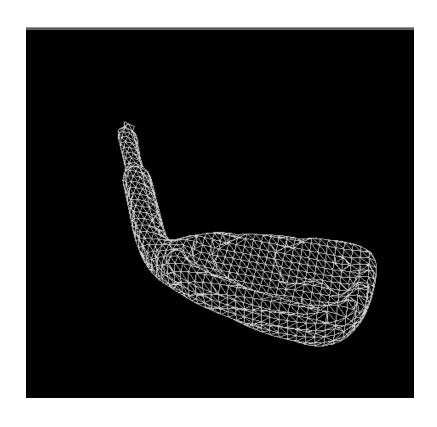


Results

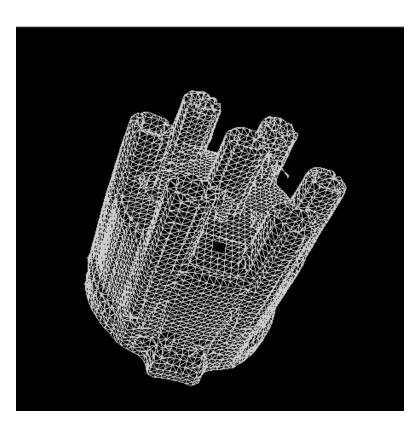


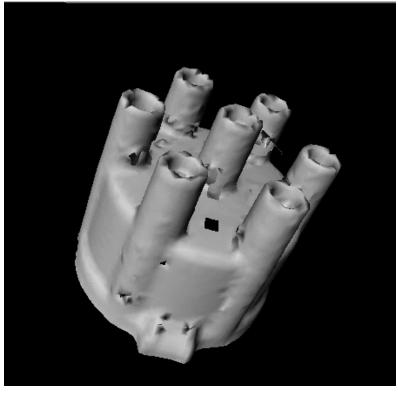


Results



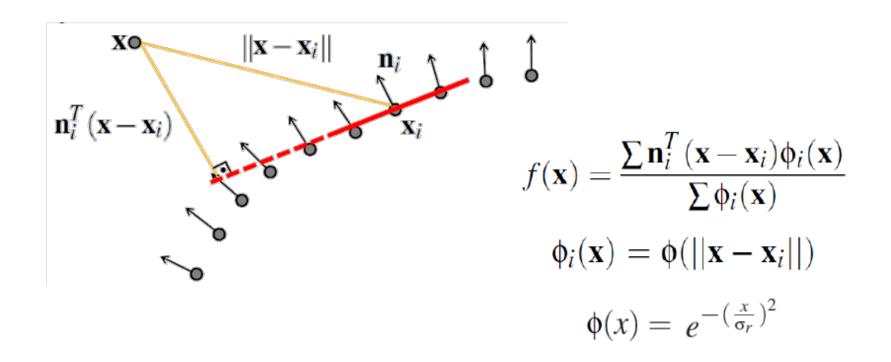
Results



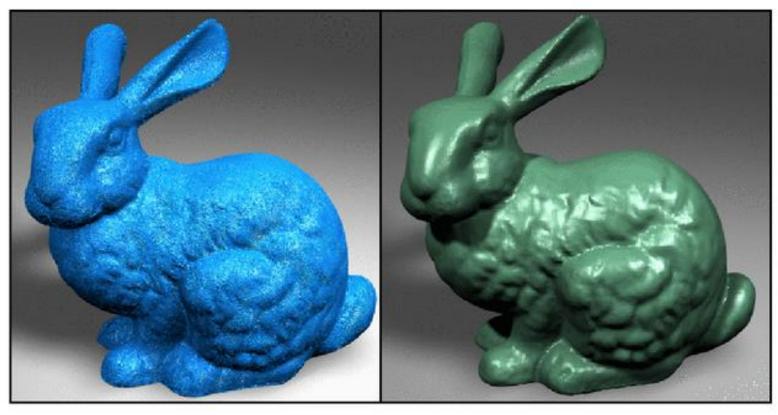


Moving Least Squares

- Similar, but different implicit function
 - Weighted contribution of nearby points



Moving Least Squares



MLS

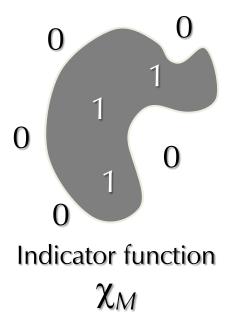
Possible Approaches

- Explicit Meshing
 - Ball pivoting algorithm
 - Crust
 - etc.
- Implicit Reconstruction
 - Hoppe's algorithm
 - Moving Least Squares (MLS)
 - Poisson surface reconstruction
 - etc.
- Surface fitting
 - Deformable templates
 - etc.

The Indicator Function

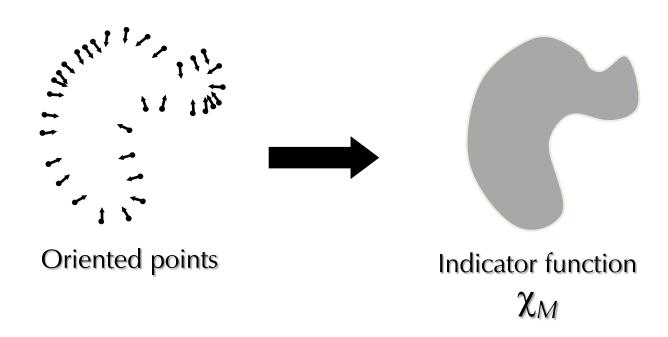
 We reconstruct the surface of the model by solving for the indicator function of the shape.

$$\chi_{M}(p) = \begin{cases} 1 & \text{if } p \in M \\ 0 & \text{if } p \notin M \end{cases}$$



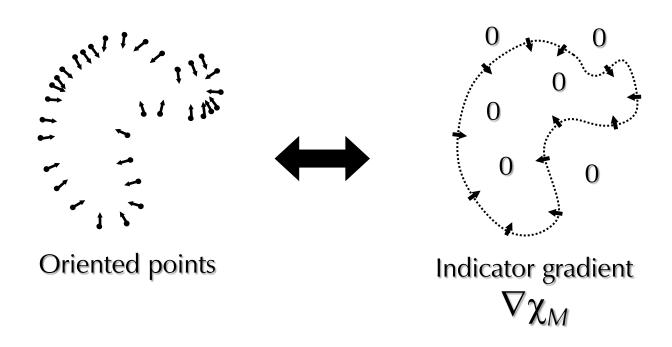
Challenge

• How to construct the indicator function?



Gradient Relationship

 There is a relationship between the normal field and gradient of indicator function



Integration

- Represent the points by a vector field \vec{V}
- Find the function χ whose gradient best approximates \vec{V} :

$$\min_{\chi} \left\| \nabla \chi - \vec{V} \right\|$$

Integration as a Poisson Problem

- Represent the points by a vector field \vec{V}
- Find the function χ whose gradient best approximates \vec{V} :

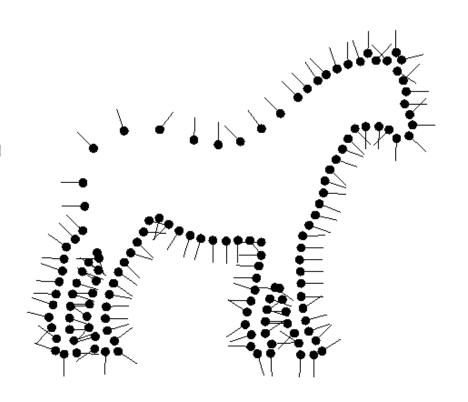
$$\min_{\chi} \left\| \nabla \chi - \vec{V} \right\|$$

 Applying the divergence operator, we can transform this into a Poisson problem:

$$abla \cdot (
abla \chi) =
abla \cdot \vec{V} \quad \iff \quad \Delta \chi =
abla \cdot \vec{V}$$

Implementation

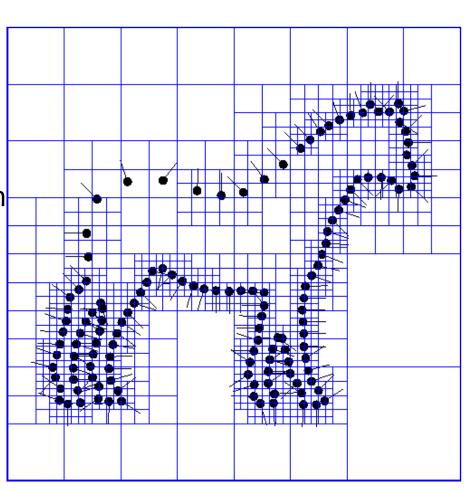
- Given the Points:
 - Set octree
 - Compute vector field
 - Compute indicator function
 - Extract iso-surface



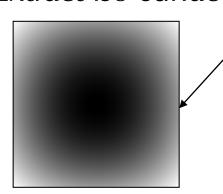
Implementation: Adapted Octree

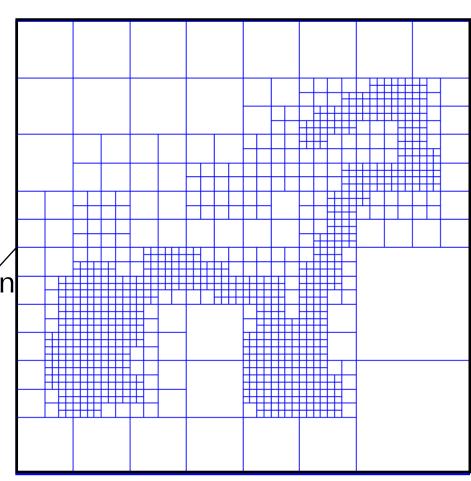
• Given the Points:

- Set octree
- Compute vector field
- Compute indicator function
- Extract iso-surface

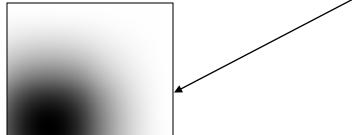


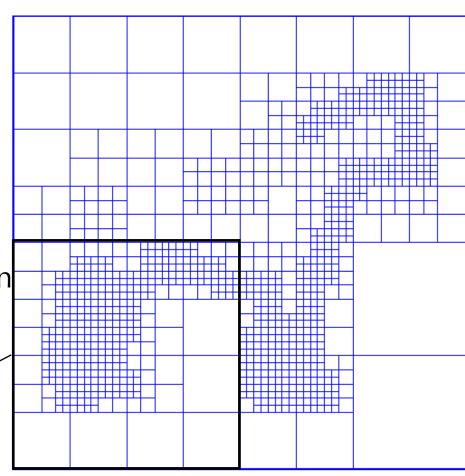
- Given the Points:
 - Set octree
 - Compute vector field
 - Define a function space
 - Splat the samples
 - Compute indicator function
 - Extract iso-surface



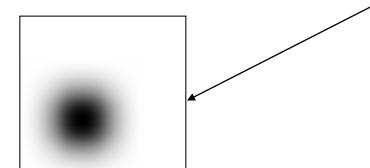


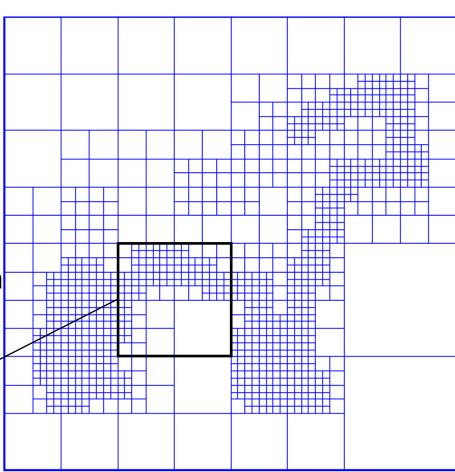
- Given the Points:
 - Set octree
 - Compute vector field
 - Define a function space
 - Splat the samples
 - Compute indicator function
 - Extract iso-surface

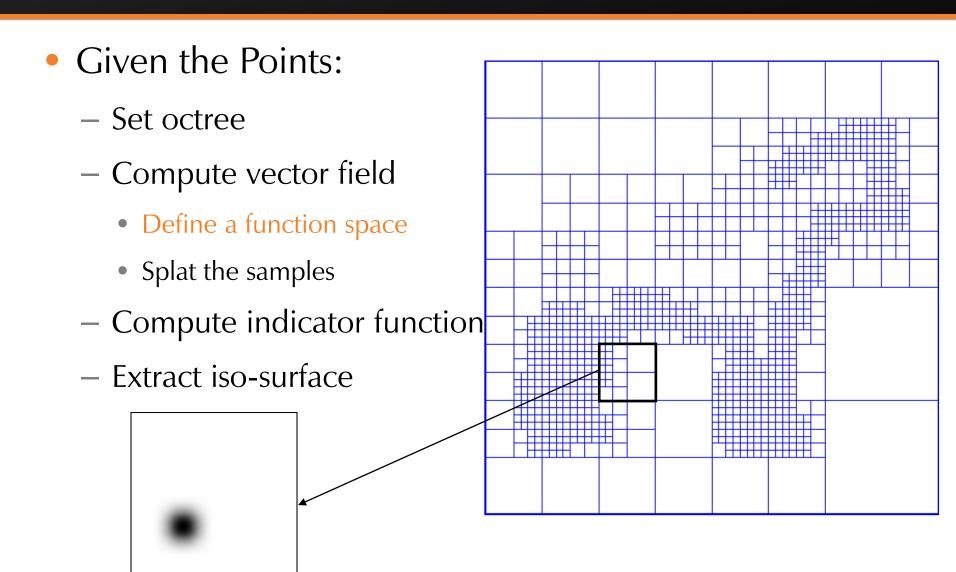




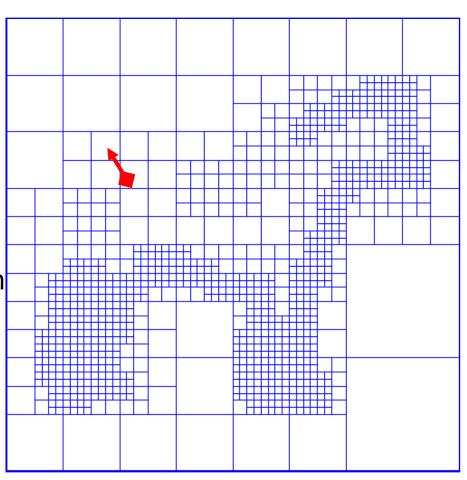
- Given the Points:
 - Set octree
 - Compute vector field
 - Define a function space
 - Splat the samples
 - Compute indicator function
 - Extract iso-surface



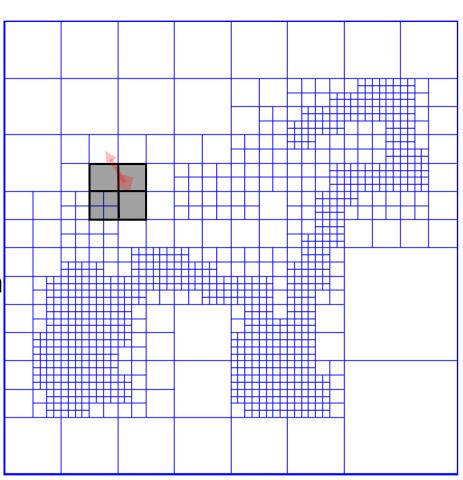




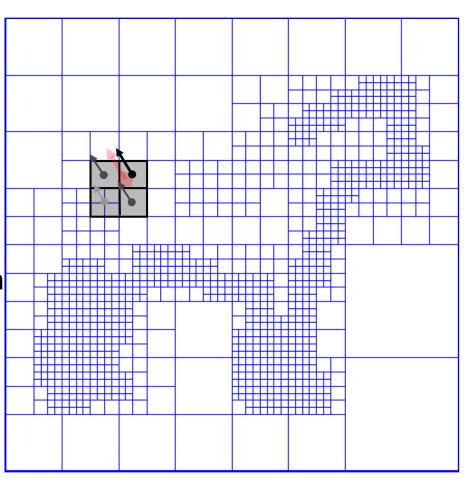
- Given the Points:
 - Set octree
 - Compute vector field
 - Define a function basis
 - Splat the samples
 - Compute indicator function
 - Extract iso-surface



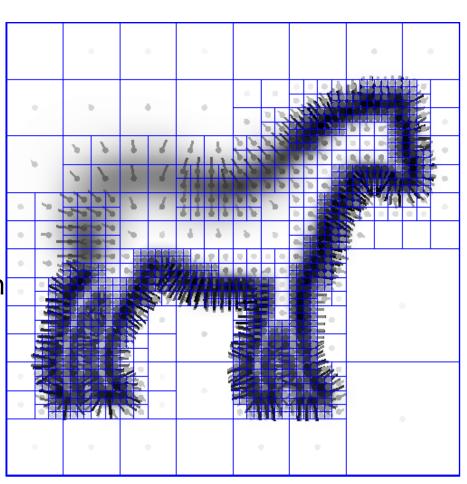
- Given the Points:
 - Set octree
 - Compute vector field
 - Define a function basis
 - Splat the samples
 - Compute indicator function
 - Extract iso-surface



- Given the Points:
 - Set octree
 - Compute vector field
 - Define a function basis
 - Splat the samples
 - Compute indicator function
 - Extract iso-surface



- Given the Points:
 - Set octree
 - Compute vector field
 - Define a function space
 - Splat the samples
 - Compute indicator function
 - Extract iso-surface



Implementation: Indicator Function

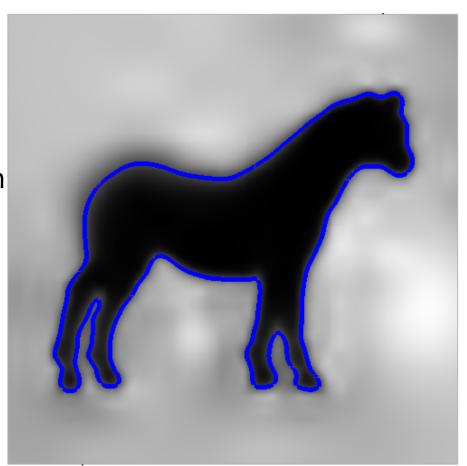
- Given the Points:
 - Set octree
 - Compute vector field
 - Compute indicator function
 - Compute divergence
 - Solve Poisson equation
 - Extract iso-surface

Implementation: Indicator Function

- Given the Points:
 - Set octree
 - Compute vector field
 - Compute indicator function
 - Compute divergence
 - Solve Poisson equation
 - Extract iso-surface

Implementation: Surface Extraction

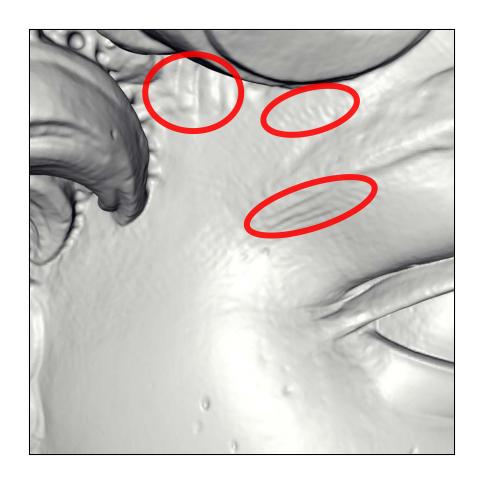
- Given the Points:
 - Set octree
 - Compute vector field
 - Compute indicator function
 - Extract iso-surface



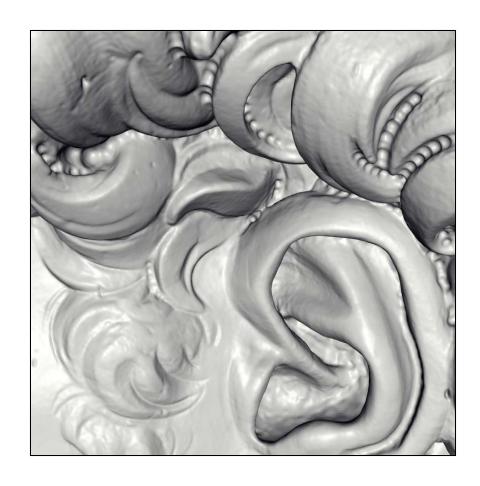
Michelangelo's David

- 215 million data points from 1000 scans
- 22 million triangle reconstruction
- Maximum tree depth of 11
- Compute Time: 2.1 hours
- Peak Memory: 6600MB

David – Chisel marks

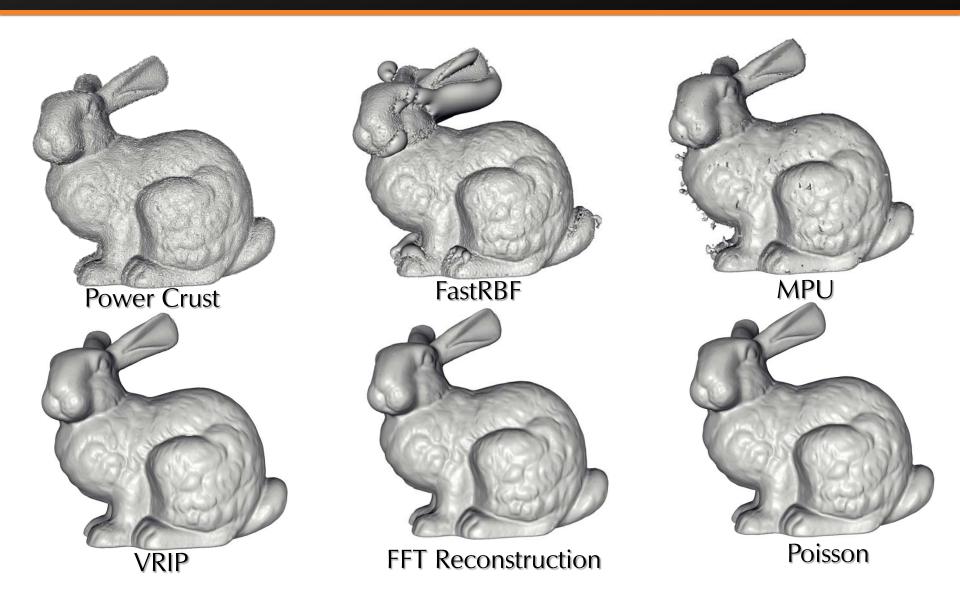


David – Drill Marks

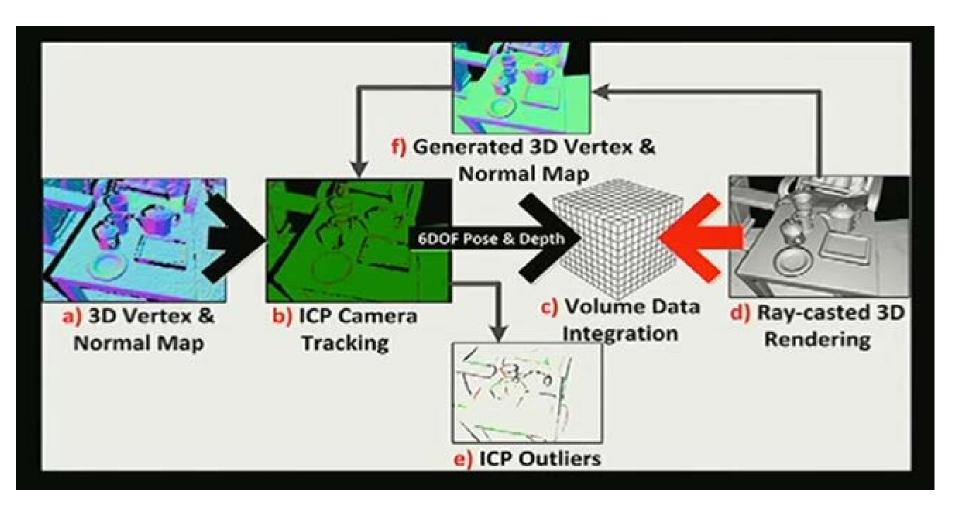


David – Eye

Stanford Bunny



Kinect Fusion



Kinect Fusion

SIGGRAPH Talks 2011

KinectFusion:

Real-Time Dynamic 3D Surface Reconstruction and Interaction

Shahram Izadi 1, Richard Newcombe 2, David Kim 1,3, Otmar Hilliges 1,
David Molyneaux 1,4, Pushmeet Kohli 1, Jamie Shotton 1,
Steve Hodges 1, Dustin Freeman 5, Andrew Davison 2, Andrew Fitzgibbon 1

1 Microsoft Research Cambridge 2 Imperial College London
 3 Newcastle University 4 Lancaster University
 5 University of Toronto

Questions?