3D Acquisition and Registration

COS 526: Advanced Computer Graphics

Slide credits: Tom Funkhouser

Point Cloud Acquisition

- Passive
 - Structure from motion
- Active
 - Touch probes
 - Optical scanning
 - Time of flight
 - Triangulation
 - Laser
 - Structured light

Structure from Motion

• Solve for 3D structure from correspondences

Structure from Motion

- Advantages:
 - Demonstrated for large photo collections
- Disadvantages:
 - Pixel correspondences required

Touch Probes

- Capture points on object with tracked tip of probe
 - Physical contact with the object
 - Manual or computer-guided

Touch Probes

- Advantages:
 - Can be very precise
 - Insensitive to appearance

- Disadvantages:
 - Slow, small scale
 - Can't use on fragile objects

Time of Flight Laser Scanning

 Measures the time it takes the laser beam to hit the object and come back

– e.g., LIDAR

$$d = 0.5 t \cdot c$$

Time of Flight Laser Scanning

Advantages

- Accommodates large range up to several miles (suitable for buildings, landscapes)
- Disadvantages
 - Lower accuracy (~ several mm)

- System includes calibrated laser beam and camera
 - Laser dot is photographed
- The location of the dot in the image allows triangulation: tells distance to the object

- System includes calibrated laser beam and camera
 - Laser dot is photographed
- The location of the dot in the image allows triangulation: tells distance to the object

- Advantages
 - Very precise (tens of microns)
- Disadvantages
 - Small distances (meters)
 - Inaccessible regions

Multi-Stripe Triangulation

Color-Coded Stripe Triangulation

Zhang et al, 3DPVT 2002

Time-Coded Stripe Triangulation

Assign each stripe a unique illumination code over time

Space

Time-Coded Stripe Triangulation

Time-Coded Stripe Triangulation

3D Reconstruction using Structured Light [Inokuchi 1984]

Structured Light Scanning: Kinect

Structured Light Scanning: Kinect

Structured Light Scanning: Kinect

Depth Map

RGB Image

Structured Light Scanning

- Advantages:
 - Very fast 2D pattern at once
- Disadvantages:
 - Prone to noise
 - Indoor only

- 1. manual initial alignment
- 2. ICP to one existing scan
- 3. automatic ICP of all overlapping pairs
- 4. global relaxation to spread out error
- 5. merging using volumetric method

- 1. manual initial alignment
- 2. ICP to one existing scan
- 3. automatic ICP of all overlapping pairs
- 4. global relaxation to spread out error
- 5. merging using volumetric method

- 1. manual initial alignment
- 2. ICP to one existing scan
- 3. automatic ICP of all overlapping pairs
- 4. global relaxation to spread out error
- 5. merging using volumetric method

- 1. manual initial alignment
- 2. ICP to one existing scan
- 3. automatic ICP of all overlapping pairs
- 4. global relaxation to spread out error
- 5. merging using volumetric method

- 1. manual initial alignment
- 2. ICP to one existing scan
- 3. automatic ICP of all overlapping pairs
- 4. global relaxation to spread out error
- 5. merging using volumetric method

- 1. manual initial alignment
- 2. ICP to one existing scan
- 3. automatic ICP of all overlapping pairs
- 4. global relaxation to spread out error
- 5. merging using volumetric method

3D Registration: Goal

 Given two partially overlapping scans, compute the transformation that makes them lie on top of each other

General Approach

1. Find feature points

Partially Overlapping Scans

General Approach

- 1. Find feature points
- 2. Establish correspondences

Partially Overlapping Scans

General Approach

- 1. Find feature points
- 2. Establish correspondences
- 3. Compute the aligning transformation

• Most problems require aligning a subset of features

Observation I

• Calculating the aligning transformation is usually easy if correspondences are known (proposed)

Observation II

• Calculating the correspondences is usually easy if the aligning transformation is known (proposed)

• The challenge is to discover the correspondences and aligning transformation together

Brute Force Search

- Simple method:
 - Try all possible sets of point correspondences
 - Score the alignment for each one

- Problem:
 - O(n^m) possible sets of m correspondences among n points

Brute Force Search

- Simple method:
 - Try all possible sets of point correspondences
 - Score the alignment for each one

O(n^m) possible sets of m correspondences among n points

Brute Force Search

- Simple method:
 - Try all possible sets of point correspondences
 - Score the alignment for each one (e.g., RMSD)

RMSD = 0.2

- Problem:
 - O(n^m) possible sets of m correspondences among n points

- Randomly sample set of possible correspondences
 - Randomly generate a small set of point correspondences
 - Compute the aligning transformation for correspondences
 Score how well other points align after that transformation
 - Remember the best transformation

ICP: Motivation

• If correct correspondences are known, can find correct relative rotation/translation

ICP: Motivation

- How to find correspondences?
 - Assume closest points correspond!

ICP: Motivation

- ... and iterate to find alignment
 - Iterative Closest Points (ICP) [Besl & McKay 92]
- Converges if starting position "close enough"

ICP Algorithm

- Select e.g. 1000 random points
- Match each to closest point on other scan, using data structure such as k-d tree
- Reject pairs (e.g. with distance > *k* times median)
- Construct error function:

$$E = \sum \left| \mathbf{R} \mathbf{p}_i + \mathbf{t} - \mathbf{q}_i \right|^2$$

• Minimize (closed form solution in [Horn 87])

- Using point-to-plane distance instead of point-to-point lets flat regions slide along each other [Chen & Medioni 91]
 - In practice, much faster convergence

• Error function:

$$E = \sum \left[(\mathbf{R}\mathbf{p}_i + \mathbf{t} - \mathbf{q}_i) \cdot \mathbf{n}_i \right]^2$$

where R is a rotation matrix, t is translation vector

- Linearize rotations
 - (i.e. assume that $\sin \theta \approx \theta$, $\cos \theta \approx 1$):

$$R = R_x R_y R_z$$

$$\approx \begin{pmatrix} 1 & -r_z & r_y \\ r_z & 1 & -r_x \\ -r_y & r_x & 1 \end{pmatrix}$$

 $Rp_i \cdot n_i \approx r \cdot (p_i \times n_i)$

• Error function:

$$E = \sum \left[(\mathbf{R}\mathbf{p}_i + \mathbf{t} - \mathbf{q}_i) \cdot \mathbf{n}_i \right]^2$$

where R is a rotation matrix, t is translation vector

• After linearization:

$$E \approx \sum \left((\mathbf{p}_i - \mathbf{q}_i) \cdot \mathbf{n}_i + \mathbf{r} \cdot (\mathbf{p}_i \times \mathbf{n}_i) + \mathbf{t} \cdot \mathbf{n}_i \right)^2, \quad \text{where } \mathbf{r} = \begin{vmatrix} \mathbf{r}_x \\ \mathbf{r}_y \end{vmatrix}$$

(r

 $\mathbf{r}_{\mathbf{z}}$

• Result: overconstrained linear system

Overconstrained linear system

$$\mathbf{A} = \begin{pmatrix} \leftarrow \mathbf{p}_1 \times \mathbf{n}_1 \rightarrow \leftarrow \mathbf{n}_1 \rightarrow \\ \leftarrow \mathbf{p}_2 \times \mathbf{n}_2 \rightarrow \leftarrow \mathbf{n}_2 \rightarrow \\ \vdots & \vdots & \vdots \end{pmatrix}, \qquad \mathbf{X} = \begin{pmatrix} r_x \\ r_y \\ r_z \\ t_x \\ t_y \\ t_z \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} -(\mathbf{p}_1 - \mathbf{q}_1) \cdot \mathbf{n}_1 \\ -(\mathbf{p}_2 - \mathbf{q}_2) \cdot \mathbf{n}_2 \\ \vdots \end{pmatrix}$$

 $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Solve using least squares

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$
$$\mathbf{x} = \left(\mathbf{A}^{\mathrm{T}}\mathbf{A}\right)^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$$