Mesh Processing and Analysis

COS 526: Advanced Computer Graphics

Digital Geometry Processing

- Processing of 3D surfaces
 - Creation, acquisition
 - Storage, transmission
 - Editing, animation, simulation
 - Manufacture
 - Analysis
- Applications
 - Movies, games
 - Computer-aided design
 - Medicine, biology
 - Art, history
 - All fields with 3D data

Mesh Processing Tasks

- Storage
 - Compression
 - Transmission
- Analysis
 - Parameterization
 - Differential geometry
 - Feature detection
 - Segmentation
- Editing
 - Smoothing, sharpening, etc.
 - Deformation
 - Completion

- Storage
 - Compression
 - Transmission
- Analysis
 - Parameterization
 - Differential geometry
 - Feature detection
 - Segmentation
- Editing
 - Smoothing, sharpening, etc.
 - Deformation
 - Completion

Lossy Compression (Simplification)

Garland

- Storage
 - Compression
 - > Transmission
- Analysis
 - Parameterization
 - Differential geometry
 - Feature detection
 - Segmentation
- Editing
 - Smoothing, sharpening, etc.
 - Deformation
 - Completion

Storage

- Compression
- Transmission
- Analysis
 - Parameterization
 - Differential geometry
 - Feature detection
 - Segmentation
- Editing
 - Smoothing, sharpening, etc.
 - Deformation
 - Completion

- Storage
 - Compression
 - Transmission
- Analysis
 - Parameterization
 - Differential geometry
 - Feature detection
 - Segmentation
- Editing
 - Smoothing, sharpening, etc.
 - Deformation
 - Completion

- Storage
 - Compression
 - Transmission
- Analysis
 - Parameterization
 - Differential geometry
 - > Feature detection
 - Segmentation
- Editing
 - Smoothing, sharpening, etc.
 - Deformation
 - Completion

- Storage
 - Compression
 - Transmission
- Analysis
 - Parameterization
 - Differential geometry
 - Feature detection
 - Segmentation
- Editing
 - Smoothing, sharpening, etc.
 - Deformation
 - Completion

- Storage
 - Compression
 - Transmission
- Analysis
 - Parameterization
 - Differential geometry
 - Feature detection
 - Segmentation
- Editing
 - Smoothing, sharpening, etc.
 - Deformation
 - Completion

Smoothing

Sharpening

- Storage
 - Compression
 - Transmission
- Analysis
 - Parameterization
 - Differential geometry
 - Feature detection
 - Segmentation
- Editing
 - Smoothing, sharpening, etc.
 - Deformation
 - Completion

- Storage
 - Compression
 - Transmission
- Analysis
 - Parameterization
 - Differential geometry
 - Feature detection
 - Segmentation
- Editing
 - Smoothing, sharpening, etc.
 - Deformation
 - Completion

Mesh Analysis: Surface Properties

Curvature

Curvature

- Curvature κ of a curve is reciprocal of radius of circle that best approximates it
- Defined at a point p in a direction w
- Line has $\kappa = 0$

Principal Curvatures

- The curvature at a point varies between some minimum and maximum these are the *principal* curvatures κ_1 and κ_2
- They occur in the *principal directions* d_1 and d_2 , which are perpendicular to each other

Principal Curvatures

Gaussian and Mean Curvature

- Planar points:
 - Zero Gaussian curvature and zero mean curvature
 - Tangent plane intersects surface at infinitely-many points

- Parabolic points:
 - Zero Gaussian curvature, non-zero mean curvature
 - Tangent plane intersects surface along a curve

- Elliptical points:
 - Positive Gaussian curvature
 - Convex/concave depending on sign of mean curvature
 - Tangent plane intersects surface at 1 point

- Hyperbolic points:
 - Negative Gaussian curvature
 - Tangent plane intersects surface along 2 curves

- Mesh Saliency:
 - Motivated by models of perceptual salience
 - Difference between mean curvature blurred with σ and blurred with 2σ

Principal Component Analysis (PCA)

- Based on covariance of points {q}: sum of qq^T
 - Analyze eigenvalues and eigenvectors of M (via SVD)
 - Eigenvectors arePrincipal Axes

$$\mathbf{M} = \frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix} q_{i}^{x} q_{i}^{x} & q_{i}^{x} q_{i}^{y} & q_{i}^{x} q_{i}^{z} \\ q_{i}^{y} q_{i}^{x} & q_{i}^{y} q_{i}^{y} & q_{i}^{y} q_{i}^{z} \\ q_{i}^{z} q_{i}^{x} & q_{i}^{z} q_{i}^{y} & q_{i}^{z} q_{i}^{z} \end{bmatrix}$$

Covariance Matrix

$$\mathbf{M} = \mathbf{U}\mathbf{S}\mathbf{U}^{t}$$

$$\mathbf{S} = \begin{bmatrix} \lambda_a & 0 & 0 \\ 0 & \lambda_b & 0 \\ 0 & 0 & \lambda_c \end{bmatrix} \quad \mathbf{U} = \begin{bmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{bmatrix}$$

Eigenvalues & Eigenvectors

Global PCA

Eigenvectors are "Principal Axes of Inertia"

 Eigenvalues are variances of the point distribution in those directions

Useful for alignment

- Provides estimate of normal direction
 - Eigenvector (principal axis) associated with smallest eigenvalue

- Helps us construct a local coordinate frame for every point
 - Map \hat{e}_1 to X axis
 - Map \hat{e}_2 to Y axis
 - Map \hat{e}_3 to Z axis

 Helps differentiate nearly plane-like, from stick-like, from sphere-like, etc.

 Helps differentiate nearly plane-like, from stick-like, from sphere-like, etc.

$$\lambda_2 / (\lambda_1 + \lambda_2 + \lambda_3)$$

Statistics of Distances

 Distances can be along surface (geodesic) or as a crow flies (Euclidean)

Geodesic distance to point

Geodesic vs. Euclidean distance

Statistics of Distances

Average geodesic distance to other points on surface

What Do Statistics of Distance Tell Us?

Shape Diameter Function

Median distance along sampling of rays through interior

Shape Diameter Function

- Distinguish between thin and thick parts in a model
- Sharp changes often correlate with part boundaries

Mesh Analysis: Applications

- Feature detection
- Segmentation
- Labeling
- Registration
- Matching
- Retrieval
- Recognition
- Classification
- Clustering
- Functionality

- Feature detection
- Segmentation
- Labeling
- Registration
- Matching
- Retrieval
- Recognition
- Classification
- Clustering
- Functionality

Schelling Points

"How can we find significant geometric features robustly?"

- Feature detection
- Segmentation
- Labeling
- Registration
- Matching
- Retrieval
- Recognition
- Classification
- Clustering
- Functionality

"How can we decompose a 3D model into its parts?"

- Feature detection
- Segmentation
- Labeling
- Registration
- Matching
- Retrieval
- Recognition
- Classification
- Clustering
- Functionality

Semantic Labels

(Golovinskiy, Lee, et al.)

"How can we decompose a 3D model into its parts?"

- Feature detection
- Segmentation
- Labeling
- Registration
- Matching
- Retrieval
- Recognition
- Classification
- Clustering
- Functionality

"How can we align features of 3D models?"

- Feature detection
- Segmentation
- Labeling
- Registration
- Matching
- Retrieval
- Recognition
- Classification
- Clustering
- Functionality

"How can we compute a measure of geometric similarity?"

- Feature detection
- Segmentation
- Labeling
- Registration
- Matching
- Retrieval
- Recognition
- Classification
- Clustering
- Functionality

Harmonic Shape Descriptors

"How can we find similar 3D shapes in a database?"

- Feature detection
- Segmentation
- Labeling
- Registration
- Matching
- Retrieval
- Recognition
- Classification
- Clustering
- Functionality

"How can we find a given 3D model in a large database?"

- Feature detection
- Segmentation
- Labeling
- Registration
- Matching
- Retrieval
- Recognition
- Classification
- Clustering
- Functionality

Query

Classes

"How can we determine the class of a 3D model?"

- Feature detection
- Segmentation
- Labeling
- Registration
- Matching
- Retrieval
- Recognition
- Classification
- Clustering
- Functionality

"How can we learn classes of 3D models automatically?"

- Feature detection
- Segmentation
- Labeling
- Registration
- Matching
- Retrieval
- Recognition
- Classification
- Clustering
- Functionality

"Can we predict how an object might be used?"