Laplacian Mesh Representation and Editing

COS 526: Advanced Computer Graphics

Outline

- Differential surface representation
- Ideas and applications
 - Compact shape representation
 - Mesh editing and manipulation
 - Membrane and flattening

Motivation

- Meshes are great, but:
 - Geometry is represented in a global coordinate system
 - Single Cartesian coordinate of a vertex doesn't say much

Laplacian Mesh Editing

Meshes are difficult to edit

Motivation

Meshes are difficult to edit

Motivation

Meshes are difficult to edit

Differential Coordinates

- Represent a point relative to its neighbors
- Represent *local detail* at each surface point
 - better describe the shape
- Linear transition from global to differential
- Useful for operations on surfaces where surface details are important

Differential Coordinates

- Detail = surface smooth(surface)
- Smoothing = averaging

$$\boldsymbol{\delta}_i = \mathbf{v}_i - \frac{1}{d_i} \sum_{j \in N(i)} \mathbf{v}_j$$

$$\boldsymbol{\delta}_i = \sum_{j \in N(i)} \frac{1}{d_i} (\mathbf{v}_i - \mathbf{v}_j)$$

Connection to the Smooth Case

- The direction of δ_i approximates the normal
- The size approximates the mean curvature H
 - 1 / radius of local best-fit sphere
- Laplace-Beltrami operator on surface (like Laplacian of a 2D function)

$$\delta_{i} = \frac{1}{d_{i}} \sum_{\mathbf{v} \in N(i)} (\mathbf{v}_{i} - \mathbf{v}) \qquad \frac{1}{len(\gamma)} \int_{\mathbf{v} \in \gamma} (\mathbf{v}_{i} - \mathbf{v}) ds$$

$$\lim_{len(\gamma) \to 0} \frac{1}{len(\gamma)} \int_{\mathbf{v} \in \gamma} (\mathbf{v}_{i} - \mathbf{v}) ds = H(\mathbf{v}_{i}) \mathbf{n}_{i}$$

Laplacian Matrix

 Coefficient of each vertex in computation of Laplacian at every other vertex

The mesh

The symmetric Laplacian L_s

Weighting Schemes

$$\mathcal{S}_i = \frac{\sum_{j \in N(i)} w_{ij} \left(\mathbf{v}_i - \mathbf{v}_j\right)}{\sum_{j \in N(i)} w_{ij}}$$

Ignore geometry

$$\delta_{\text{umbrella}}$$
: $w_{ij} = 1$

Integrate over circle around vertex

$$\delta_{\text{mean value}}: w_{ij} = \tan \phi_{ij}/2 + \tan \phi_{ij+1}/2$$

Integrate over Voronoi region of vertex

$$\delta_{cotangent}$$
: $w_{ij} = \cot \alpha_{ij} + \cot \beta_{ij}$

Laplacian Mesh Representation

• Vertex positions are represented by Laplacian coordinates $(\delta_x, \delta_v, \delta_z)$

$$\boldsymbol{\delta}_{i} = \sum_{j \in N(i)} w_{ij} \left(\mathbf{v}_{i} - \mathbf{v}_{j} \right)$$

$$\mathbf{L} \qquad \mathbf{v}_{\mathbf{x}} = \mathbf{\delta}_{\mathbf{x}}$$

$$\mathbf{L} \qquad \mathbf{v_y} = \mathbf{\delta_y}$$

$$\mathbf{L} \qquad \mathbf{v_z} = \mathbf{\delta_z}$$

Basic Properties

- rank(L) = n c (n 1 for connected meshes)
- Can reconstruct geometry from δ up to translation
 - Add constraint on one vertex for unique solution

Reconstruction

Constrain additional vertices: overdetermined system

$$\arg\min_{x} \left(\|Lx - \delta_{x}\|^{2} + \sum_{k=1}^{n_{c}} \|x_{k} - c_{k}\|^{2} \right)$$

 Cool underlying idea: shape defined as minimizer of an objective function

So Far...

- Laplacian coordinates δ
 - Local representation
 - Translation-invariant
- Linear transition from δ to xyz
 - can constrain more than 1 vertex
 - least-squares solution

Editing Using Laplacian Coordinates

The editing process from the user's point of view:

- 1. Set ROI, anchors, and a handle vertex
- 2. Move the handle, interactively see effect on mesh

Editing Using Laplacian Coordinates

Behind the scenes...

- ROI defines vertices that are included in the solve
- Constraints at anchors: responsible for smooth transition of the edited part to the rest of the mesh
 - Increasing weight with distance away from handle
- Precomputation enables interactivity

$$\mathbf{A} \mathbf{x} = \mathbf{b}$$

$$\mathbf{A}^{T}\mathbf{A} \mathbf{x} = \mathbf{A}^{T}\mathbf{b}$$

$$\mathbf{x} = (\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{b}$$
compute once

Original

Regular Laplacian editing

Solve for transformations

What Else Can We Do with It?

 By modifying Laplacians or positional constraints, can achieve a variety of other effects

Detail Transfer

 "Peel" the detail off one surface and transfer to another

Detail Transfer

Detail Transfer

Mixing Laplacians

• Take weighted average of δ_i and δ'_i

Mesh Transplanting

Geometrical stitching via Laplacian mixing

Mesh Transplanting

• Details gradually change in the transition area

Mesh Transplanting

Details gradually change in the transition area

Feature Preserving Smoothing

Weighted positional and smoothing constraints

Feature Preserving Smoothing

Weighted positional and smoothing constraints

Parameterization

• Use zero Laplacians.

Texture Mapping

Texture Mapping

[Piponi 2000]