Mesh Representation and Decimation

COS 526: Advanced Computer Graphics

Slide credits: Tom Funkhouser, Ravi Ramamoorthi, Keenan Crane, Hugues Hoppe
Motivation

• We want to do operations on meshes
 – Rendering
 – Simplification
 – Computational geometry
 – Smoothing
 – Analysis

• Range from “graph-like” to “signal-processing-like”

• Best representations (mesh data structures)?
Desirable Characteristics for Mesh Data Structures

• Generality – from most general to least
 – Polygon soup
 – Only triangles
 – 2-manifold $\rightarrow \leq 2$ triangles per edge
 – Orientable \rightarrow consistent CW / CCW winding
 – Closed \rightarrow no boundary

• Compact storage
Desirable Characteristics for Mesh Data Structures

- Efficient support for operations:
 - Given face, find its vertices
 - Given vertex, find faces touching it
 - Given face, find neighboring faces
 - Given vertex, find neighboring edges or vertices
 - Given edge, find vertices and faces it touches
Mesh Data Structures

- Independent faces
- Indexed face set
- Adjacency lists
- Winged-edge
- Half-edge
Independent Faces

- Faces list vertex coordinates
 - Redundant vertices
 - No topology information

Face Table

<table>
<thead>
<tr>
<th>F₀</th>
<th>(x₀, y₀, z₀), (x₁, y₁, z₁), (x₂, y₂, z₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₁</td>
<td>(x₃, y₃, z₃), (x₄, y₄, z₄), (x₅, y₅, z₅)</td>
</tr>
<tr>
<td>F₂</td>
<td>(x₆, y₆, z₆), (x₇, y₇, z₇), (x₈, y₈, z₈)</td>
</tr>
</tbody>
</table>

![Diagram of Independent Faces]
Indexed Face Set

- Faces list vertex references – “shared vertices”

Vertex Table
- \(v_0: (x_0, y_0, z_0) \)
- \(v_1: (x_1, y_1, z_1) \)
- \(v_2: (x_2, y_2, z_2) \)
- \(v_3: (x_3, y_3, z_3) \)
- \(v_4: (x_4, y_4, z_4) \)

Face Table
- \(F_0: 0, 1, 2 \)
- \(F_1: 1, 4, 2 \)
- \(F_2: 1, 3, 4 \)

Note CCW ordering
Indexed Face Set

- Storage efficiency?
- Which operations supported in \(O(1) \) time?

Vertex Table

- \(v_0: (x_0, y_0, z_0) \)
- \(v_1: (x_1, y_1, z_1) \)
- \(v_2: (x_2, y_2, z_2) \)
- \(v_3: (x_3, y_3, z_3) \)
- \(v_4: (x_4, y_4, z_4) \)

Face Table

- \(F_0: 0, 1, 2 \)
- \(F_1: 1, 4, 2 \)
- \(F_2: 1, 3, 4 \)

Note CCW ordering
Efficient Algorithm Design

• Can *sometimes* design algorithms to compensate for operations not supported by data structures

• **Example:** per-vertex normals
 – Average normal of faces touching each vertex
 – With indexed face set, vertex \rightarrow face is $O(n)$
 – Naive algorithm for all vertices: $O(n^2)$
 – Can you think of an $O(n)$ algorithm?
Efficient Algorithm Design

• Can sometimes design algorithms to compensate for operations not supported by data structures

• **Example:** per-vertex normals
 – Average normal of faces touching each vertex
 – With indexed face set, vertex \rightarrow face is $O(n)$
 – Naive algorithm for all vertices: $O(n^2)$
 – Can you think of an $O(n)$ algorithm?

• For other operations, useful to have vertex \rightarrow face (and/or other) adjacency lookup be $O(1)$
Full Adjacency Lists

- Store all vertex, face, and edge adjacencies

Edge Adjacency Table

- $e_0: v_0, v_1; F_0, \emptyset; \emptyset, e_2, e_1, \emptyset$
- $e_1: v_1, v_2; F_0, F_1; e_5, e_0, e_2, e_6$
- ...

Face Adjacency Table

- $F_0: v_0, v_1, v_2; F_1, \emptyset, \emptyset; e_1, e_2, e_0$
- $F_1: v_1, v_4, v_2; \emptyset, F_0, F_2; e_6, e_1, e_5$
- $F_2: v_1, v_3, v_4; \emptyset, F_1, \emptyset; e_4, e_5, e_3$

Vertex Adjacency Table

- $v_0: v_1, v_2; F_0; e_0, e_2$
- $v_1: v_3, v_4, v_2, v_0; F_2, F_1, F_0; e_3, e_5, e_1, e_0$
- ...
Full Adjacency: Issues

- “Lookup” operations are efficient
- Storage is expensive
- Updating data structures is very expensive
- For most applications, *partial* adjacencies are sufficient
Partial Adjacency Lists

- Store some adjacencies, use to derive others
- Many possibilities...

Edge Adjacency Table

- e_0: v_0, v_1; F_0, \emptyset; $\emptyset, e_2, e_1, \emptyset$
- e_1: v_1, v_2; F_0, F_1; e_5, e_0, e_2, e_6

Face Adjacency Table

- F_0: v_0, v_1, v_2; $F_1, \emptyset, \emptyset$; e_1, e_2, e_0
- F_1: v_1, v_4, v_2; \emptyset, F_0, F_2; e_6, e_1, e_5
- F_2: v_1, v_3, v_4; $\emptyset, F_1, \emptyset$; e_4, e_5, e_3

Vertex Adjacency Table

- v_0: v_1, v_2; F_0; e_0, e_2
- v_1: v_3, v_4, v_2, v_0; F_2, F_1, F_0; e_3, e_5, e_1, e_0
Partial Adjacency Lists

- Some combinations only make sense for closed manifolds

Edge Adjacency Table

- e_0: $v_0, v_1; F_0, \emptyset; \emptyset, e_2, e_1, \emptyset$
- e_1: $v_1, v_2; F_0, F_1; e_5, e_0, e_2, e_6$

Face Adjacency Table

- F_0: $v_0, v_1, v_2; F_1, \emptyset, \emptyset; e_1, e_2, e_0$
- F_1: $v_1, v_4, v_2; \emptyset, F_0, F_2; e_6, e_1, e_5$
- F_2: $v_1, v_3, v_4; \emptyset, F_1, \emptyset; e_4, e_5, e_3$

Vertex Adjacency Table

- v_0: $v_1, v_2; F_0; e_0, e_2$
- v_1: $v_3, v_4, v_2; F_2, F_1, F_0; e_3, e_5, e_1, e_0$

Diagram:

- Vertices: v_0, v_1, v_2, v_3, v_4
- Edges: $e_0, e_1, e_2, e_3, e_4, e_5, e_6$
- Faces: F_0, F_1, F_2
Winged, Half Edge Representations

- Most information associated with edges
 - Vertices, faces point to one edge each
- Compact Storage
- Many operations efficient
- Allow one to walk around mesh
- General for arbitrary polygons (not just triangles)
- But, relative to partial adjacency tables, updating can be more complex
Winged Edge

- Each edge stores 2 vertices, 2 faces, 4 edges – fixed size
- Enough information to completely “walk around” faces or vertices
- Think how to implement
 - Walking around vertex
 - Finding neighborhood of face
Half Edge

• Instead of single edge, 2 directed “half edges”

• Each stores 1 vertex, 1 face, 2 half-edges

• Makes some operations more efficient
class HalfEdge {
 // Only one example, some critical functions
public:
 HalfEdgeIter next; // points to the next halfedge around the current face
 HalfEdgeIter flip; // points to the other halfedge associated with this edge
 VertexIter vertex; // points to the vertex at the "tail" of this halfedge
 EdgeIter edge; // points to the edge associated with this halfedge
 FaceIter face; // points to the face containing this halfedge
 bool onBoundary; // true if this halfedge is contained in a boundary
 // loop; false otherwise
};
```cpp
int Vertex :: valence( void ) const { // returns the number of incident faces
    int n = 0;
    HalfEdgeCIter h = he; // Start loop with half-edge for that vertex
    do {
        n++; // Increment Valence. Other operations similar:
        // For area, A += h -> face -> area();
        h = h->flip->next; // Next Face. Why does this work?
    } while ( h != he ); // Stop when loop is complete.
    return n;
}
```

From Keenan Crane’s Geometry Processing code https://github.com/dgpdec/course
Mesh Decimation

Triangles:

41,855
27,970
20,922
12,939
8,385
4,766
Mesh Decimation

• Reduce number of polygons
 – Less storage
 – Faster rendering
 – Simpler manipulation

• Desirable properties
 – Generality
 – Efficiency
 – Produces “good” approximation

Michelangelo’s St. Matthew
Original model: ~400M polygons
Mesh Simplification Considerations

- Type of input mesh?
- Modifies topology?
- Continuous LOD?
- Speed vs. quality?
Mesh Decimation

• Typical: greedy algorithm
 – Measure error of possible “simple” operations
 – Place operations in queue according to error
 – Perform operations in queue successively
 – After each operation, re-evaluate error metrics
Primitive Operations

• Simplify a bit at a time by removing a few faces
 – Repeated to simplify whole mesh
• Types of operations
 – Vertex cluster
 – Vertex remove
 – Edge collapse
 – Pair contraction
Vertex Cluster

• Method
 – Merge vertices based on proximity
 – Triangles with repeated vertices can collapse to edges or points

• Properties
 – General and robust
 – Can be unattractive if results in topology change
Vertex Remove

• Method
 – Remove vertex and adjacent faces
 – Fill hole with new triangles (reduction of 2)

• Properties
 – Requires manifold surface, preserves topology
 – Typically more attractive
 – Filling hole well not always easy
Edge Collapse

- **Method**
 - Merge two edge vertices to one
 - Delete degenerate triangles
Edge Collapse

- **Method**
 - Merge two edge vertices to one
 - Delete degenerate triangles *(warning: can be nontrivial!)*

- **Properties**
 - Special case of vertex cluster
 - Allows smooth transition
 - Can change topology
Pair Contraction

- Generalization of edge collapse + vertex cluster: also allow nearby but disjoint regions to merge
Operation Considerations

- **Topology considerations**
 - Attention to topology promotes better appearance
 - Allowing non-manifolds increases robustness and ability to simplify

- **Operation considerations**
 - Collapse-type operations allow smooth transitions
 - Vertex remove affects smaller portion of mesh than edge collapse
Geometric Error Metrics

• **Motivation**
 – Promote accurate 3D shape preservation
 – Preserve screen-space silhouettes and pixel coverage

• **Types**
 – Vertex-Vertex Distance
 – Surface-Surface Distance
 – Vertex-Surface Distance
 – Vertex-Plane Distance
Vertex-Vertex Distance

- \(E = \max(|v' - v_1|, |v' - v_2|) \)
- Appropriate during topology changes
 - Rossignac and Borrel 93
 - Luebke and Erikson 97
- Loose for topology-preserving collapses
Surface-Surface Distance

• Compute or approximate maximum distance between input and simplified surfaces
 – Tolerance Volumes - Guéziec 96
 – Simplification Envelopes - Cohen/Varshney 96
 – Hausdorff Distance - Klein 96
 – Mapping Distance - Bajaj/Schikore 96, Cohen et al. 97
Veretx-Surface Distance

- For each original vertex, find closest point on simplified surface
- Compute sum of squared distances
- Faster approximation to surface-surface distance
 - But not the same: error is zero only at vertices and preserved edges
Geometric Error Observations

- Vertex-vertex and vertex-surface distance
 - Fast
 - Low error in practice, but not guaranteed by metric

- Surface-surface distance
 - Required for guaranteed error bounds

vertex-vertex \neq surface-surface
Vertex-Plane Distance

- Store set of planes with each vertex
 - Error based on distance from vertex to planes
 - When vertices are merged, merge plane sets

- Error Quadrics
 - Store quadric form instead of explicit plane sets
Quadric Error Metrics

- Sum of squared distances from vertex to planes:

\[\Delta = \sum_v \left(\text{Dist}(v,p)^2 \right) \]

\[v = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}, \quad p = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]

\[\text{Dist}(v,p) = ax + by + cz + d = p^T v \]
Quadric Error Metrics

\[\Delta = \sum_p (p^T v)^2 \]
\[= \sum_p v^T p p^T v \]
\[= v^T \left(\sum_p p p^T \right) v \]
\[= v^T Q v \]

- Common mathematical trick: quadratic form = symmetric matrix \(Q \) multiplied twice by a vector
Quadric Error Metrics

- Garland & Heckbert, SIGGRAPH 97
- Greedy decimation algorithm
- Pair collapse (allow edge + non-edge collapses)
- Quadric error metrics:
 - Evaluate potential collapses
 - Determine optimal new vertex locations
Using Quadrics

- Approximate error of edge collapses
 - Each vertex v has associated quadric Q
 - Error of collapsing v_1 and v_2 to v' is $v'^TQ_1v' + v'^TQ_2v'$
 - Quadric for new vertex v' is $Q' = Q_1 + Q_2$
Using Quadrics

- Find optimal location v' after collapse:

$$\min_{v'} v'^T Q' v': \quad \frac{\partial}{\partial x} = \frac{\partial}{\partial y} = \frac{\partial}{\partial z} = 0$$

$$Q' = \begin{bmatrix}
q_{11} & q_{12} & q_{13} & q_{14} \\
q_{12} & q_{22} & q_{23} & q_{24} \\
q_{13} & q_{23} & q_{33} & q_{34} \\
q_{14} & q_{24} & q_{34} & q_{44}
\end{bmatrix}$$
Using Quadrics

- Find optimal location v' after collapse:
Quadric Visualization

- Ellipsoids: iso-error surfaces
- Smaller ellipsoid = greater error for a given motion
- Lower error for motion parallel to surface
- Lower error in flat regions than at corners
- Elongated in “cylindrical” regions
Results

Original

Quadrics

1k tris

100 tris
Results

Original

Quadrics

250 tris

250 tris, edge collapses only
Progressive Mesh

- Encode continuous detail as sequence of edge collapses

\[
\text{ecol}(v_s, v_t, v'_s)
\]

\[M^N \xrightarrow{\text{ecol}_0} \text{ecol}_1 \xrightarrow{} \text{ecol}_{i-1} \xrightarrow{} \text{ecol}_{n-1}\]
Progressive Mesh

- Simplification process

\[
\hat{M} = M^n \xrightarrow{ecol_{n-1}} M^{175} \xrightarrow{ecol_i} M^1 \xrightarrow{ecol_0} M^0
\]
Progressive Mesh

- Inversion is possible with vertex split transformation

\[\text{vspl}(v_s, v_l, v_r, v'_s, v'_t, \ldots) \]
Progressive Mesh

- Reconstruction process

\[M^0 \xrightarrow{v_{spl_0}} M^1 \xrightarrow{} M^{175} \xrightarrow{} M^n = \hat{M} \]

progressive mesh (PM) representation
Progressive Mesh

- From PM, extract M_i of any desired complexity (this is multiresolution)

$$M^0 \rightarrow vsp_{i_0} \rightarrow vsp_{i_1} \rightarrow vsp_{i_{-1}} \rightarrow vsp_{i_{n-1}}$$

M^i

3,478 faces? No problem
Progressive Mesh
View-Dependent Simplification

- Simplify dynamically according to viewpoint
 - Visibility
 - Silhouettes
 - Lighting
Remeshing

- Alternative to decimation

- **Placing** polygons to approximate shape vs. greedily removing polygons from a complex one
 - “Bottom up” vs. top-down
 - Usually better approximation at a low polygon count
 - Can place polygons in more “intuitive” places
Anisotropic Polygonal Remeshing

- Draw lines of curvature, place samples, connect

[Alliez et al., SIGGRAPH 03]
Variational Shape Approximation

- Grow close-to-planar patches, polygonize
 [Cohen-Steiner et al., SIGGRAPH 04]