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Motivation

• We want to do operations on meshes
– Rendering

– Simplification

– Computational geometry

– Smoothing

– Analysis

• Range from “graph-like” to “signal-processing-like”

• Best representations (mesh data structures)?



Desirable Characteristics for
Mesh Data Structures

• Generality – from most general to least
– Polygon soup

– Only triangles

– 2-manifold → ≤ 2 triangles per edge

– Orientable → consistent CW / CCW winding

– Closed → no boundary

• Compact storage



Desirable Characteristics for
Mesh Data Structures

• Efficient support for operations:
– Given face, find its vertices

– Given vertex, find faces touching it

– Given face, find neighboring faces

– Given vertex, find neighboring edges or vertices

– Given edge, find vertices and faces it touches



Mesh Data Structures

• Independent faces

• Indexed face set

• Adjacency lists

• Winged-edge

• Half-edge



Independent Faces

• Faces list vertex coordinates
– Redundant vertices

– No topology information

Face Table
F0: (x0,y0,z0), (x1,y1,z1), (x2,y2,z2)
F1: (x3,y3,z3), (x4,y4,z4), (x5,y5,z5)
F2: (x6,y6,z6), (x7,y7,z7), (x8,y8,z8)F0

F1
F2



Indexed Face Set

• Faces list vertex references – “shared vertices”

Vertex Table
v0: (x0,y0,z0)
v1: (x1,y1,z1)
v2: (x2,y2,z2)
v3: (x3,y3,z3)
v4: (x4,y4,z4)

Face Table
F0: 0, 1, 2
F1: 1, 4, 2
F2: 1, 3, 4

Note CCW ordering

F0

F1
F2

v0 v1 v3

v4v2



Indexed Face Set

• Storage efficiency?

• Which operations supported in O(1) time?

Vertex Table
v0: (x0,y0,z0)
v1: (x1,y1,z1)
v2: (x2,y2,z2)
v3: (x3,y3,z3)
v4: (x4,y4,z4)

Face Table
F0: 0, 1, 2
F1: 1, 4, 2
F2: 1, 3, 4F0

F1
F2

v0 v1 v3

v4v2

Note CCW ordering



Efficient Algorithm Design

• Can sometimes design algorithms to compensate for 
operations not supported by data structures

• Example: per-vertex normals
– Average normal of faces touching each vertex

– With indexed face set, vertex → face is O(n)

– Naive algorithm for all vertices: O(n2)

– Can you think of an O(n) algorithm?



Efficient Algorithm Design

• Can sometimes design algorithms to compensate for 
operations not supported by data structures

• Example: per-vertex normals
– Average normal of faces touching each vertex

– With indexed face set, vertex → face is O(n)

– Naive algorithm for all vertices: O(n2)

– Can you think of an O(n) algorithm?

• For other operations, useful to have vertex → face 
(and/or other) adjacency lookup be O(1)



Full Adjacency Lists

• Store all vertex, face,
and edge adjacencies

F0

F1
F2

v0 v1 v3

v4v2

e2

e0 e3

e4

e6

e1

e5

Edge Adjacency Table
e0: v0, v1; F0,∅; ∅,e2,e1,∅
e1: v1,v2; F0,F1; e5,e0,e2,e6…

Face Adjacency Table
F0: v0,v1,v2; F1,∅,∅; e1,e2,e0
F1: v1,v4,v2; ∅,F0,F2; e6,e1,e5
F2: v1,v3,v4; ∅,F1,∅; e4,e5,e3

Vertex Adjacency Table
v0: v1,v2; F0; e0,e2
v1: v3,v4,v2,v0; F2,F1,F0; e3,e5,e1,e0…



Full Adjacency: Issues

• “Lookup” operations are efficient

• Storage is expensive

• Updating data structures is very expensive

• For most applications, partial adjacencies are sufficient



Partial Adjacency Lists

• Store some adjacencies,
use to derive others

• Many possibilities…

F0

F1
F2

v0 v1 v3

v4v2

e2

e0 e3

e4

e6

e1

e5

Edge Adjacency Table
e0: v0, v1; F0,∅; ∅,e2,e1,∅
e1: v1,v2; F0,F1; e5,e0,e2,e6…

Face Adjacency Table
F0: v0,v1,v2; F1,∅,∅; e1,e2,e0
F1: v1,v4,v2; ∅,F0,F2; e6,e1,e5
F2: v1,v3,v4; ∅,F1,∅; e4,e5,e3

Vertex Adjacency Table
v0: v1,v2; F0; e0,e2
v1: v3,v4,v2,v0; F2,F1,F0; e3,e5,e1,e0…



Partial Adjacency Lists

• Some combinations only
make sense for closed
manifolds

F0

F1
F2

v0 v1 v3

v4v2

e2

e0 e3

e4

e6

e1

e5

Edge Adjacency Table
e0: v0, v1; F0,∅; ∅,e2,e1,∅
e1: v1,v2; F0,F1; e5,e0,e2,e6…

Face Adjacency Table
F0: v0,v1,v2; F1,∅,∅; e1,e2,e0
F1: v1,v4,v2; ∅,F0,F2; e6,e1,e5
F2: v1,v3,v4; ∅,F1,∅; e4,e5,e3

Vertex Adjacency Table
v0: v1,v2; F0; e0,e2
v1: v3,v4,v2,v0; F2,F1,F0; e3,e5,e1,e0…



Winged, Half Edge Representations

• Most information associated with edges
– Vertices, faces point to one edge each

• Compact Storage

• Many operations efficient

• Allow one to walk around mesh

• General for arbitrary polygons (not just  triangles)

• But, relative to partial adjacency tables,
updating can be more complex



Winged Edge

• Each edge stores 2 vertices, 
2 faces, 4 edges – fixed size

• Enough information to 
completely “walk around” 
faces or vertices

• Think how to implement
– Walking around vertex

– Finding neighborhood of face vbegin

vend

Fleft Fright

eforw,righteforw,left

eback,left eback,right



Half Edge

• Instead of single edge, 
2 directed “half edges”

• Each stores 1 vertex,
1 face, 2 half-edges

• Makes some operations 
more efficient

vbegin

henext

Fleft heinv



HalfEdge Data Structure (example)

class HalfEdge { // Only one example, some critical functions

public:

HalfEdgeIter next; // points to the next halfedge around the current face

HalfEdgeIter flip; // points to the other halfedge associated with this edge

VertexIter vertex; // points to the vertex at the "tail" of this halfedge

EdgeIter edge; // points to the edge associated with this halfedge

FaceIter face; // points to the face containing this halfedge

bool onBoundary; // true if this halfedge is contained in a boundary

// loop; false otherwise

} ; 

From Keenan Crane’s Geometry Processing code https://github.com/dgpdec/course

https://github.com/dgpdec/course


HalfEdge Walk Around Faces

int Vertex :: valence( void ) const { // returns the number of incident faces

int n = 0;

HalfEdgeCIter h = he; // Start loop with half-edge for that vertex

do {

n++; // Increment Valence.  Other operations similar:

// For area,  A += h -> face -> area() ; 

h = h->flip->next; // Next Face.  Why does this work?

} while ( h != he ); // Stop when loop is complete.

return n;

}

From Keenan Crane’s Geometry Processing code https://github.com/dgpdec/course

https://github.com/dgpdec/course


Mesh Decimation

Triangles: 
41,855 
27,970 
20,922 
12,939 
8,385 
4,766

Division, Viewpoint, Cohen



Mesh Decimation

• Reduce number of polygons
– Less storage

– Faster rendering

– Simpler manipulation

• Desirable properties
– Generality

– Efficiency

– Produces “good” approximation

Michelangelo’s St. Matthew
Original model: ~400M polygons



Mesh Simplification Considerations

• Type of input mesh?

• Modifies topology?

• Continuous LOD?

• Speed vs. quality?



Mesh Decimation

• Typical: greedy algorithm
– Measure error of possible “simple” operations 

– Place operations in queue according to error

– Perform operations in queue successively

– After each operation, re-evaluate error metrics



Primitive Operations

• Simplify a bit at a time by removing a few faces
– Repeated to simplify whole mesh

• Types of operations
– Vertex cluster

– Vertex remove

– Edge collapse

– Pair contraction



Vertex Cluster

• Method
– Merge vertices based on proximity

– Triangles with repeated vertices can collapse to edges or points

• Properties
– General and robust

– Can be unattractive if results in topology change



Vertex Remove

• Method
– Remove vertex and adjacent faces

– Fill hole with new triangles (reduction of 2)

• Properties
– Requires manifold surface, preserves topology

– Typically more attractive

– Filling hole well not always easy



Edge Collapse

• Method
– Merge two edge vertices to one

– Delete degenerate triangles



Edge Collapse

• Method
– Merge two edge vertices to one

– Delete degenerate triangles (warning: can be nontrivial!)

• Properties
– Special case of vertex cluster

– Allows smooth transition

– Can change topology



Pair Contraction

• Generalization of edge collapse + vertex cluster: 
also allow nearby but disjoint regions to merge



Operation Considerations

• Topology considerations
– Attention to topology promotes better appearance

– Allowing non-manifolds increases robustness and
ability to simplify

• Operation considerations
– Collapse-type operations allow smooth transitions

– Vertex remove affects smaller portion of mesh than
edge collapse



Geometric Error Metrics

• Motivation
– Promote accurate 3D shape preservation

– Preserve screen-space silhouettes and pixel coverage

• Types
– Vertex-Vertex Distance

– Surface-Surface Distance

– Vertex-Surface Distance

– Vertex-Plane Distance



Vertex-Vertex Distance

• E = max(|v’−v1|, |v’−v2|)

• Appropriate during topology changes
– Rossignac and Borrel 93

– Luebke and Erikson 97

• Loose for topology-preserving collapses

v1
v2

v’



Surface-Surface Distance

• Compute or approximate maximum distance 
between input and simplified surfaces
– Tolerance Volumes - Guéziec 96

– Simplification Envelopes - Cohen/Varshney 96

– Hausdorff Distance - Klein 96

– Mapping Distance - Bajaj/Schikore 96, Cohen et al. 97



Veretx-Surface Distance

• For each original vertex, find
closest point on simplified surface

• Compute sum of squared distances

• Faster approximation to surface-surface distance
– But not the same: error is zero only at vertices and 

preserved edges 



Geometric Error Observations

• Vertex-vertex and vertex-surface distance
– Fast

– Low error in practice, but not guaranteed by metric

• Surface-surface distance
– Required for guaranteed error bounds

Edge swap

vertex-vertex ≠ surface-surface



Vertex-Plane Distance

• Store set of planes with each vertex
– Error based on distance from vertex to planes

– When vertices are merged, merge plane sets

• Error Quadrics
– Store quadric form instead of explicit plane sets

a
b c

da

db

dc



Quadric Error Metrics

• Sum of squared distances from vertex to planes:
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Quadric Error Metrics

• Common mathematical trick: quadratic form = 
symmetric matrix Q multiplied twice by a vector
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Quadric Error Metrics

• Garland & Heckbert, SIGGRAPH 97

• Greedy decimation algorithm

• Pair collapse (allow edge + non-edge collapses)

• Quadric error metrics:
– Evaluate potential collapses

– Determine optimal new vertex locations



Using Quadrics

• Approximate error of edge collapses
– Each vertex v has associated quadric Q

– Error of collapsing v1 and v2 to v’ is v’TQ1v’+v’TQ2v’

– Quadric for new vertex v’ is Q’=Q1+Q2



Using Quadrics

• Find optimal location v’ after collapse:
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Using Quadrics

• Find optimal location v’ after collapse:
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Quadric Visualization

• Ellipsoids: iso-error surfaces

• Smaller ellipsoid = greater 
error for a given motion

• Lower error for motion 
parallel to surface

• Lower error in flat regions 
than at corners

• Elongated in “cylindrical” 
regions



Results

Original

1k tris 100 tris

Quadrics



Results

Original

250 tris, edge collapses only
250 tris

Quadrics



Progressive Mesh

• Encode continuous detail as sequence of edge 
collapses

ecol(vs ,vt , v’s )

vl vr

vt

vs

vs
vl vr’

MN ecol0 ecol1 ecoli-1 ecoln-1

Hoppe



• Simplification process

13,546 500 152 150

M0M1M175

ecol0ecoliecoln-1

M=Mn^

Progressive Mesh

Hoppe



Progressive Mesh

• Inversion is possible with vertex split transformation

vsvl vr

vspl(vs ,vl ,vr , vs ,vt ,…)

vl vr

vt

vs

’ ’
’

’

attributes

Hoppe



• Reconstruction process

150

M0 M1

vspl0

152

M175

500

…  vspli …

13,546

vspln-1

Mn=M̂

progressive mesh (PM) representation

vspl0 …  vspli … vspln-1

M0

Progressive Mesh

Hoppe



Progressive Mesh

• From PM, extract Mi of any desired complexity
(this is multiresolution)

M0 vspl0 vspl1 vspli-1 vspln-1

Mi

3,478 faces?  No problem

Hoppe



Progressive Mesh

Hoppe






View-Dependent Simplification

• Simplify dynamically according to viewpoint
– Visibility

– Silhouettes

– Lighting

Hoppe



Remeshing

• Alternative to decimation

• Placing polygons to approximate shape vs. greedily 
removing polygons from a complex one
– “Bottom up” vs. top-down

– Usually better approximation at a low polygon count

– Can place polygons in more “intuitive” places



Anisotropic Polygonal Remeshing

• Draw lines of curvature, place samples, connect
[Alliez et al., SIGGRAPH 03]



Variational Shape Approximation

• Grow close-to-planar patches, polygonize
[Cohen-Steiner et al., SIGGRAPH 04]
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