Mesh Representation and Decimation

COS 526: Advanced Computer Graphics

Slide credits: Tom Funkhouser, Ravi Ramamoorthi, Keenan Crane, Hugues Hoppe

Motivation

- We want to do operations on meshes
 - Rendering
 - Simplification
 - Computational geometry
 - Smoothing
 - Analysis
- Range from "graph-like" to "signal-processing-like"
- Best representations (mesh data structures)?

Desirable Characteristics for Mesh Data Structures

- Generality from most general to least
 - Polygon soup
 - Only triangles
 - -2-manifold $\rightarrow \leq 2$ triangles per edge
 - − Orientable → consistent CW / CCW winding
 - Closed \rightarrow no boundary
- Compact storage

Desirable Characteristics for Mesh Data Structures

- Efficient support for operations:
 - Given face, find its vertices
 - Given vertex, find faces touching it
 - Given face, find neighboring faces
 - Given vertex, find neighboring edges or vertices
 - Given edge, find vertices and faces it touches

Mesh Data Structures

- Independent faces
- Indexed face set
- Adjacency lists
- Winged-edge
- Half-edge

Independent Faces

- Faces list vertex coordinates
 - Redundant vertices
 - No topology information

 $\frac{Face Table}{F_0: (x_0, y_0, z_0), (x_1, y_1, z_1), (x_2, y_2, z_2)}$ $F_1: (x_3, y_3, z_3), (x_4, y_4, z_4), (x_5, y_5, z_5)$ $F_2: (x_6, y_6, z_6), (x_7, y_7, z_7), (x_8, y_8, z_8)$

Faces list vertex references – "shared vertices"

Note CCW ordering

Indexed Face Set

- Storage efficiency?
- Which operations supported in O(1) time?

Note CCW ordering

Efficient Algorithm Design

- Can *sometimes* design algorithms to compensate for operations not supported by data structures
- Example: per-vertex normals
 - Average normal of faces touching each vertex
 - With indexed face set, vertex \rightarrow face is O(n)
 - Naive algorithm for all vertices: $O(n^2)$
 - Can you think of an O(n) algorithm?

Efficient Algorithm Design

- Can *sometimes* design algorithms to compensate for operations not supported by data structures
- Example: per-vertex normals
 - Average normal of faces touching each vertex
 - With indexed face set, vertex \rightarrow face is O(n)
 - Naive algorithm for all vertices: $O(n^2)$
 - Can you think of an O(n) algorithm?
- For other operations, useful to have vertex \rightarrow face (and/or other) adjacency lookup be O(1)

Full Adjacency Lists

 Store all vertex, face, and edge adjacencies

 $\frac{\text{Edge Adjacency Table}}{e_0: v_0, v_1; F_0, \emptyset; \emptyset, e_2, e_1, \emptyset} \\ e_1: v_1, v_2; F_0, F_1; e_5, e_0, e_2, e_6 \\ \vdots$

 $\frac{Face Adjacency Table}{F_0: v_0, v_1, v_2; F_1, \emptyset, \emptyset; e_1, e_2, e_0} \\F_1: v_1, v_4, v_2; \emptyset, F_0, F_2; e_6, e_1, e_5 \\F_2: v_1, v_3, v_4; \emptyset, F_1, \emptyset; e_4, e_5, e_3$

<u>Vertex Adjacency Table</u> v₀: v₁,v₂; F₀; e₀,e₂ v₁: v₃,v₄,v₂,v₀; F₂,F₁,F₀; e₃,e₅,e₁,e₀ :

Full Adjacency: Issues

- "Lookup" operations are efficient
- Storage is expensive
- Updating data structures is very expensive
- For most applications, partial adjacencies are sufficient

Partial Adjacency Lists

- Store some adjacencies, use to derive others
- Many possibilities...

Edge Adjacency Table $e_0: v_0, v_1; F_0, \emptyset; \emptyset, e_2, e_1, \emptyset$ $e_1: v_1, v_2; F_0, F_1; e_5, e_0, e_2, e_6$ \vdots

 $\frac{Face Adjacency Table}{F_0: v_0, v_1, v_2; F_1, \emptyset, \emptyset; e_1, e_2, e_0} \\F_1: v_1, v_4, v_2; \emptyset, F_0, F_2; e_6, e_1, e_5 \\F_2: v_1, v_3, v_4; \emptyset, F_1, \emptyset; e_4, e_5, e_3$

<u>Vertex Adjacency Table</u> v₀: v₁,v₂; F₀; e₀,e₂ v₁: v₃,v₄,v₂,v₀; F₂,F₁,F₀; e₃,e₅,e₁,e₀

Partial Adjacency Lists

 Some combinations only make sense for closed manifolds

Edge Adjacency Table $e_0: v_0, v_1; F_0, \emptyset; \emptyset, e_2, e_1, \emptyset$ $e_1: v_1, v_2; F_0, F_1; e_5, e_0, e_2, e_6$:

 $\frac{Face Adjacency Table}{F_0: v_0, v_1, v_2; F_1, \emptyset, \emptyset; e_1, e_2, e_0} \\F_1: v_1, v_4, v_2; \emptyset, F_0, F_2; e_6, e_1, e_5 \\F_2: v_1, v_3, v_4; \emptyset, F_1, \emptyset; e_4, e_5, e_3$

<u>Vertex Adjacency Table</u> v₀: v₁,v₂; F₀; e₀,e₂ v₁: v₃,v₄,v₂,v₀; F₂,F₁,F₀; e₃,e₅,e₁,e₀

Winged, Half Edge Representations

- Most information associated with edges
 - Vertices, faces point to one edge each
- Compact Storage
- Many operations efficient
- Allow one to walk around mesh
- General for arbitrary polygons (not just triangles)
- But, relative to partial adjacency tables, updating can be more complex

Winged Edge

- Each edge stores 2 vertices,
 2 faces, 4 edges fixed size
- Enough information to completely "walk around" faces or vertices
- Think how to implement
 - Walking around vertex
 - Finding neighborhood of face

Half Edge

- Instead of single edge,
 2 directed "half edges"
- Each stores 1 vertex,
 1 face, 2 half-edges
- Makes some operations more efficient

HalfEdge Data Structure (example)

class HalfEdge { public:

> HalfEdgelter next; HalfEdgelter flip; Vertexlter vertex; Edgelter edge; Facelter face; bool onBoundary;

// Only one example, some critical functions

// points to the next halfedge around the current face // points to the other halfedge associated with this edge // points to the vertex at the "tail" of this halfedge // points to the edge associated with this halfedge // points to the face containing this halfedge // true if this halfedge is contained in a boundary // loop; false otherwise

};

From Keenan Crane's Geometry Processing code <u>https://github.com/dgpdec/course</u>

HalfEdge Walk Around Faces

```
int Vertex :: valence( void ) const { // returns the number of incident faces
    int n = 0;
    HalfEdgeClter h = he;
                                         // Start loop with half-edge for that vertex
    do {
                                         // Increment Valence. Other operations similar:
      n++;
                                         // For area, A += h \rightarrow face \rightarrow area();
      h = h \rightarrow flip \rightarrow next;
                                         // Next Face. Why does this work?
    } while ( h != he );
                                         // Stop when loop is complete.
    return n;
}
```

From Keenan Crane's Geometry Processing code <u>https://github.com/dgpdec/course</u>

Mesh Decimation

Mesh Decimation

- Reduce number of polygons
 - Less storage
 - Faster rendering
 - Simpler manipulation
- Desirable properties
 - Generality
 - Efficiency
 - Produces "good" approximation

Michelangelo's St. Matthew Original model: ~400M polygons

Mesh Simplification Considerations

- Type of input mesh?
- Modifies topology?
- Continuous LOD?
- Speed vs. quality?

Mesh Decimation

- Typical: greedy algorithm
 - Measure error of possible "simple" operations
 - Place operations in queue according to error
 - Perform operations in queue successively
 - After each operation, re-evaluate error metrics

Primitive Operations

- Simplify a bit at a time by removing a few faces
 - Repeated to simplify whole mesh
- Types of operations
 - Vertex cluster
 - Vertex remove
 - Edge collapse
 - Pair contraction

Vertex Cluster

- Method
 - Merge vertices based on proximity
 - Triangles with repeated vertices can collapse to edges or points
- Properties
 - General and robust
 - Can be unattractive if results in topology change

Vertex Remove

- Method
 - Remove vertex and adjacent faces
 - Fill hole with new triangles (reduction of 2)
- Properties
 - Requires manifold surface, preserves topology
 - Typically more attractive
 - Filling hole well not always easy

Edge Collapse

- Method
 - Merge two edge vertices to one
 - Delete degenerate triangles

Edge Collapse

- Method
 - Merge two edge vertices to one
 - Delete degenerate triangles (warning: can be nontrivial!)
- Properties
 - Special case of vertex cluster
 - Allows smooth transition
 - Can change topology

Pair Contraction

 Generalization of edge collapse + vertex cluster: also allow nearby but disjoint regions to merge

Operation Considerations

- Topology considerations
 - Attention to topology promotes better appearance
 - Allowing non-manifolds increases robustness and ability to simplify
- Operation considerations
 - Collapse-type operations allow smooth transitions
 - Vertex remove affects smaller portion of mesh than edge collapse

Geometric Error Metrics

Motivation

- Promote accurate 3D shape preservation
- Preserve screen-space silhouettes and pixel coverage

Types

- Vertex-Vertex Distance
- Surface-Surface Distance
- Vertex-Surface Distance
- Vertex-Plane Distance

Vertex-Vertex Distance

•
$$E = max(|v'-v_1|, |v'-v_2|)$$

- Appropriate during topology changes
 - Rossignac and Borrel 93
 - Luebke and Erikson 97
- Loose for topology-preserving collapses

Surface-Surface Distance

- Compute or approximate maximum distance between input and simplified surfaces
 - Tolerance Volumes Guéziec 96
 - Simplification Envelopes Cohen/Varshney 96
 - Hausdorff Distance Klein 96
 - Mapping Distance Bajaj/Schikore 96, Cohen et al. 97

Veretx-Surface Distance

- For each original vertex, find closest point on simplified surface
- Compute sum of squared distances
- Faster approximation to surface-surface distance
 - But not the same: error is zero only at vertices and preserved edges

Geometric Error Observations

- Vertex-vertex and vertex-surface distance
 - Fast
 - Low error in practice, but not guaranteed by metric
- Surface-surface distance
 - Required for guaranteed error bounds

vertex-vertex \neq surface-surface

Vertex-Plane Distance

- Store set of planes with each vertex
 - Error based on distance from vertex to planes
 - When vertices are merged, merge plane sets
- Error Quadrics
 - Store quadric form instead of explicit plane sets

Quadric Error Metrics

• Sum of squared distances from vertex to planes:

$$\Delta_{\mathbf{v}} = \sum_{\mathbf{p}} Dist(\mathbf{v}, \mathbf{p})^{2}$$
$$\mathbf{v} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}, \quad \mathbf{p} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$
$$Dist(\mathbf{v}, \mathbf{p}) = ax + by + cz + d = \mathbf{p}^{\mathrm{T}} \mathbf{v}$$

Quadric Error Metrics

$$\Delta = \sum_{\mathbf{p}} (\mathbf{p}^{\mathrm{T}} \mathbf{v})^{2}$$
$$= \sum_{\mathbf{p}} \mathbf{v}^{\mathrm{T}} \mathbf{p} \mathbf{p}^{\mathrm{T}} \mathbf{v}$$
$$= \mathbf{v}^{\mathrm{T}} \left(\sum_{\mathbf{p}} \mathbf{p} \mathbf{p}^{\mathrm{T}} \right) \mathbf{v}$$
$$= \mathbf{v}^{\mathrm{T}} \mathbf{Q} \mathbf{v}$$

 Common mathematical trick: quadratic form = symmetric matrix Q multiplied twice by a vector

Quadric Error Metrics

- Garland & Heckbert, SIGGRAPH 97
- Greedy decimation algorithm
- Pair collapse (allow edge + non-edge collapses)
- Quadric error metrics:
 - Evaluate potential collapses
 - Determine optimal new vertex locations

Using Quadrics

- Approximate error of edge collapses
 - Each vertex v has associated quadric Q
 - Error of collapsing v_1 and v_2 to v' is $v'^{\mathsf{T}}Q_1v' + v'^{\mathsf{T}}Q_2v'$
 - Quadric for new vertex v' is $Q'=Q_1+Q_2$

Using Quadrics

• Find optimal location v' after collapse:

$$\mathbf{Q'} = \begin{bmatrix} q_{11} & q_{12} & q_{13} & q_{14} \\ q_{12} & q_{22} & q_{23} & q_{24} \\ q_{13} & q_{23} & q_{33} & q_{34} \\ q_{14} & q_{24} & q_{34} & q_{44} \end{bmatrix}$$
$$\min_{\mathbf{v'}} \mathbf{v'^{T}} \mathbf{Q'v'}: \quad \frac{\partial}{\partial x} = \frac{\partial}{\partial y} = \frac{\partial}{\partial z} = \mathbf{0}$$

Using Quadrics

• Find optimal location v' after collapse:

Quadric Visualization

- Ellipsoids: iso-error surfaces
- Smaller ellipsoid = greater error for a given motion
- Lower error for motion parallel to surface
- Lower error in flat regions than at corners
- Elongated in "cylindrical" regions

Results

Results

Original

Quadrics

250 tris

250 tris, edge collapses only

Progressive Mesh

Encode continuous detail as sequence of edge collapses

• Simplification process

Progressive Mesh

Inversion is possible with vertex split transformation

Reconstruction process

progressive mesh (PM) representation

• From PM, extract M_i of any desired complexity (this is multiresolution)

3,478 faces? No problem

Hoppe

Progressive Mesh

View-Dependent Simplification

- Simplify dynamically according to viewpoint
 - Visibility
 - Silhouettes
 - Lighting

Remeshing

- Alternative to decimation
- Placing polygons to approximate shape vs. greedily removing polygons from a complex one
 - "Bottom up" vs. top-down
 - Usually better approximation at a low polygon count
 - Can place polygons in more "intuitive" places

Anisotropic Polygonal Remeshing

• Draw lines of curvature, place samples, connect [Alliez et al., SIGGRAPH 03]

Variational Shape Approximation

• Grow close-to-planar patches, polygonize [Cohen-Steiner et al., SIGGRAPH 04]

