
COS 526: Advanced Computer Graphics

Mesh Representation and Decimation

Slide credits: Tom Funkhouser, Ravi Ramamoorthi, Keenan Crane, Hugues Hoppe

Motivation

• We want to do operations on meshes
– Rendering

– Simplification

– Computational geometry

– Smoothing

– Analysis

• Range from “graph-like” to “signal-processing-like”

• Best representations (mesh data structures)?

Desirable Characteristics for
Mesh Data Structures

• Generality – from most general to least
– Polygon soup

– Only triangles

– 2-manifold → ≤ 2 triangles per edge

– Orientable → consistent CW / CCW winding

– Closed → no boundary

• Compact storage

Desirable Characteristics for
Mesh Data Structures

• Efficient support for operations:
– Given face, find its vertices

– Given vertex, find faces touching it

– Given face, find neighboring faces

– Given vertex, find neighboring edges or vertices

– Given edge, find vertices and faces it touches

Mesh Data Structures

• Independent faces

• Indexed face set

• Adjacency lists

• Winged-edge

• Half-edge

Independent Faces

• Faces list vertex coordinates
– Redundant vertices

– No topology information

Face Table
F0: (x0,y0,z0), (x1,y1,z1), (x2,y2,z2)
F1: (x3,y3,z3), (x4,y4,z4), (x5,y5,z5)
F2: (x6,y6,z6), (x7,y7,z7), (x8,y8,z8)F0

F1
F2

Indexed Face Set

• Faces list vertex references – “shared vertices”

Vertex Table
v0: (x0,y0,z0)
v1: (x1,y1,z1)
v2: (x2,y2,z2)
v3: (x3,y3,z3)
v4: (x4,y4,z4)

Face Table
F0: 0, 1, 2
F1: 1, 4, 2
F2: 1, 3, 4

Note CCW ordering

F0

F1
F2

v0 v1 v3

v4v2

Indexed Face Set

• Storage efficiency?

• Which operations supported in O(1) time?

Vertex Table
v0: (x0,y0,z0)
v1: (x1,y1,z1)
v2: (x2,y2,z2)
v3: (x3,y3,z3)
v4: (x4,y4,z4)

Face Table
F0: 0, 1, 2
F1: 1, 4, 2
F2: 1, 3, 4F0

F1
F2

v0 v1 v3

v4v2

Note CCW ordering

Efficient Algorithm Design

• Can sometimes design algorithms to compensate for
operations not supported by data structures

• Example: per-vertex normals
– Average normal of faces touching each vertex

– With indexed face set, vertex → face is O(n)

– Naive algorithm for all vertices: O(n2)

– Can you think of an O(n) algorithm?

Efficient Algorithm Design

• Can sometimes design algorithms to compensate for
operations not supported by data structures

• Example: per-vertex normals
– Average normal of faces touching each vertex

– With indexed face set, vertex → face is O(n)

– Naive algorithm for all vertices: O(n2)

– Can you think of an O(n) algorithm?

• For other operations, useful to have vertex → face
(and/or other) adjacency lookup be O(1)

Full Adjacency Lists

• Store all vertex, face,
and edge adjacencies

F0

F1
F2

v0 v1 v3

v4v2

e2

e0 e3

e4

e6

e1

e5

Edge Adjacency Table
e0: v0, v1; F0,∅; ∅,e2,e1,∅
e1: v1,v2; F0,F1; e5,e0,e2,e6…

Face Adjacency Table
F0: v0,v1,v2; F1,∅,∅; e1,e2,e0
F1: v1,v4,v2; ∅,F0,F2; e6,e1,e5
F2: v1,v3,v4; ∅,F1,∅; e4,e5,e3

Vertex Adjacency Table
v0: v1,v2; F0; e0,e2
v1: v3,v4,v2,v0; F2,F1,F0; e3,e5,e1,e0…

Full Adjacency: Issues

• “Lookup” operations are efficient

• Storage is expensive

• Updating data structures is very expensive

• For most applications, partial adjacencies are sufficient

Partial Adjacency Lists

• Store some adjacencies,
use to derive others

• Many possibilities…

F0

F1
F2

v0 v1 v3

v4v2

e2

e0 e3

e4

e6

e1

e5

Edge Adjacency Table
e0: v0, v1; F0,∅; ∅,e2,e1,∅
e1: v1,v2; F0,F1; e5,e0,e2,e6…

Face Adjacency Table
F0: v0,v1,v2; F1,∅,∅; e1,e2,e0
F1: v1,v4,v2; ∅,F0,F2; e6,e1,e5
F2: v1,v3,v4; ∅,F1,∅; e4,e5,e3

Vertex Adjacency Table
v0: v1,v2; F0; e0,e2
v1: v3,v4,v2,v0; F2,F1,F0; e3,e5,e1,e0…

Partial Adjacency Lists

• Some combinations only
make sense for closed
manifolds

F0

F1
F2

v0 v1 v3

v4v2

e2

e0 e3

e4

e6

e1

e5

Edge Adjacency Table
e0: v0, v1; F0,∅; ∅,e2,e1,∅
e1: v1,v2; F0,F1; e5,e0,e2,e6…

Face Adjacency Table
F0: v0,v1,v2; F1,∅,∅; e1,e2,e0
F1: v1,v4,v2; ∅,F0,F2; e6,e1,e5
F2: v1,v3,v4; ∅,F1,∅; e4,e5,e3

Vertex Adjacency Table
v0: v1,v2; F0; e0,e2
v1: v3,v4,v2,v0; F2,F1,F0; e3,e5,e1,e0…

Winged, Half Edge Representations

• Most information associated with edges
– Vertices, faces point to one edge each

• Compact Storage

• Many operations efficient

• Allow one to walk around mesh

• General for arbitrary polygons (not just triangles)

• But, relative to partial adjacency tables,
updating can be more complex

Winged Edge

• Each edge stores 2 vertices,
2 faces, 4 edges – fixed size

• Enough information to
completely “walk around”
faces or vertices

• Think how to implement
– Walking around vertex

– Finding neighborhood of face vbegin

vend

Fleft Fright

eforw,righteforw,left

eback,left eback,right

Half Edge

• Instead of single edge,
2 directed “half edges”

• Each stores 1 vertex,
1 face, 2 half-edges

• Makes some operations
more efficient

vbegin

henext

Fleft heinv

HalfEdge Data Structure (example)

class HalfEdge { // Only one example, some critical functions

public:

HalfEdgeIter next; // points to the next halfedge around the current face

HalfEdgeIter flip; // points to the other halfedge associated with this edge

VertexIter vertex; // points to the vertex at the "tail" of this halfedge

EdgeIter edge; // points to the edge associated with this halfedge

FaceIter face; // points to the face containing this halfedge

bool onBoundary; // true if this halfedge is contained in a boundary

// loop; false otherwise

} ;

From Keenan Crane’s Geometry Processing code https://github.com/dgpdec/course

https://github.com/dgpdec/course

HalfEdge Walk Around Faces

int Vertex :: valence(void) const { // returns the number of incident faces

int n = 0;

HalfEdgeCIter h = he; // Start loop with half-edge for that vertex

do {

n++; // Increment Valence. Other operations similar:

// For area, A += h -> face -> area() ;

h = h->flip->next; // Next Face. Why does this work?

} while (h != he); // Stop when loop is complete.

return n;

}

From Keenan Crane’s Geometry Processing code https://github.com/dgpdec/course

https://github.com/dgpdec/course

Mesh Decimation

Triangles:
41,855
27,970
20,922
12,939
8,385
4,766

Division, Viewpoint, Cohen

Mesh Decimation

• Reduce number of polygons
– Less storage

– Faster rendering

– Simpler manipulation

• Desirable properties
– Generality

– Efficiency

– Produces “good” approximation

Michelangelo’s St. Matthew
Original model: ~400M polygons

Mesh Simplification Considerations

• Type of input mesh?

• Modifies topology?

• Continuous LOD?

• Speed vs. quality?

Mesh Decimation

• Typical: greedy algorithm
– Measure error of possible “simple” operations

– Place operations in queue according to error

– Perform operations in queue successively

– After each operation, re-evaluate error metrics

Primitive Operations

• Simplify a bit at a time by removing a few faces
– Repeated to simplify whole mesh

• Types of operations
– Vertex cluster

– Vertex remove

– Edge collapse

– Pair contraction

Vertex Cluster

• Method
– Merge vertices based on proximity

– Triangles with repeated vertices can collapse to edges or points

• Properties
– General and robust

– Can be unattractive if results in topology change

Vertex Remove

• Method
– Remove vertex and adjacent faces

– Fill hole with new triangles (reduction of 2)

• Properties
– Requires manifold surface, preserves topology

– Typically more attractive

– Filling hole well not always easy

Edge Collapse

• Method
– Merge two edge vertices to one

– Delete degenerate triangles

Edge Collapse

• Method
– Merge two edge vertices to one

– Delete degenerate triangles (warning: can be nontrivial!)

• Properties
– Special case of vertex cluster

– Allows smooth transition

– Can change topology

Pair Contraction

• Generalization of edge collapse + vertex cluster:
also allow nearby but disjoint regions to merge

Operation Considerations

• Topology considerations
– Attention to topology promotes better appearance

– Allowing non-manifolds increases robustness and
ability to simplify

• Operation considerations
– Collapse-type operations allow smooth transitions

– Vertex remove affects smaller portion of mesh than
edge collapse

Geometric Error Metrics

• Motivation
– Promote accurate 3D shape preservation

– Preserve screen-space silhouettes and pixel coverage

• Types
– Vertex-Vertex Distance

– Surface-Surface Distance

– Vertex-Surface Distance

– Vertex-Plane Distance

Vertex-Vertex Distance

• E = max(|v’−v1|, |v’−v2|)

• Appropriate during topology changes
– Rossignac and Borrel 93

– Luebke and Erikson 97

• Loose for topology-preserving collapses

v1
v2

v’

Surface-Surface Distance

• Compute or approximate maximum distance
between input and simplified surfaces
– Tolerance Volumes - Guéziec 96

– Simplification Envelopes - Cohen/Varshney 96

– Hausdorff Distance - Klein 96

– Mapping Distance - Bajaj/Schikore 96, Cohen et al. 97

Veretx-Surface Distance

• For each original vertex, find
closest point on simplified surface

• Compute sum of squared distances

• Faster approximation to surface-surface distance
– But not the same: error is zero only at vertices and

preserved edges

Geometric Error Observations

• Vertex-vertex and vertex-surface distance
– Fast

– Low error in practice, but not guaranteed by metric

• Surface-surface distance
– Required for guaranteed error bounds

Edge swap

vertex-vertex ≠ surface-surface

Vertex-Plane Distance

• Store set of planes with each vertex
– Error based on distance from vertex to planes

– When vertices are merged, merge plane sets

• Error Quadrics
– Store quadric form instead of explicit plane sets

a
b c

da

db

dc

Quadric Error Metrics

• Sum of squared distances from vertex to planes:

vppv

pv

pv
pv

T

2

),(

,

1

),(

=+++=



















=



















=

=∆ ∑

dczbyaxDist

d
c
b
a

z
y
x

Dist

Quadric Error Metrics

• Common mathematical trick: quadratic form =
symmetric matrix Q multiplied twice by a vector

Qvv

vppv

vppv

vp

p

p

p

T

TT

TT

2T)(

=









=

=

=∆

∑

∑

∑

Quadric Error Metrics

• Garland & Heckbert, SIGGRAPH 97

• Greedy decimation algorithm

• Pair collapse (allow edge + non-edge collapses)

• Quadric error metrics:
– Evaluate potential collapses

– Determine optimal new vertex locations

Using Quadrics

• Approximate error of edge collapses
– Each vertex v has associated quadric Q

– Error of collapsing v1 and v2 to v’ is v’TQ1v’+v’TQ2v’

– Quadric for new vertex v’ is Q’=Q1+Q2

Using Quadrics

• Find optimal location v’ after collapse:

0:'''min

'

T

'

44342414

34332313

24232212

14131211

===



















=

∂
∂

∂
∂

∂
∂

zyx

qqqq
qqqq
qqqq
qqqq

vQv

Q

v

Using Quadrics

• Find optimal location v’ after collapse:





































=



















=



















−

1
0
0
0

1000

'

1
0
0
0

'

1000
1

34332313

24232212

14131211

34332313

24232212

14131211

qqqq
qqqq
qqqq

qqqq
qqqq
qqqq

v

v

Quadric Visualization

• Ellipsoids: iso-error surfaces

• Smaller ellipsoid = greater
error for a given motion

• Lower error for motion
parallel to surface

• Lower error in flat regions
than at corners

• Elongated in “cylindrical”
regions

Results

Original

1k tris 100 tris

Quadrics

Results

Original

250 tris, edge collapses only
250 tris

Quadrics

Progressive Mesh

• Encode continuous detail as sequence of edge
collapses

ecol(vs ,vt , v’s)

vl vr

vt

vs

vs
vl vr’

MN ecol0 ecol1 ecoli-1 ecoln-1

Hoppe

• Simplification process

13,546 500 152 150

M0M1M175

ecol0ecoliecoln-1

M=Mn^

Progressive Mesh

Hoppe

Progressive Mesh

• Inversion is possible with vertex split transformation

vsvl vr

vspl(vs ,vl ,vr , vs ,vt ,…)

vl vr

vt

vs

’ ’
’

’

attributes

Hoppe

• Reconstruction process

150

M0 M1

vspl0

152

M175

500

… vspli …

13,546

vspln-1

Mn=M̂

progressive mesh (PM) representation

vspl0 … vspli … vspln-1

M0

Progressive Mesh

Hoppe

Progressive Mesh

• From PM, extract Mi of any desired complexity
(this is multiresolution)

M0 vspl0 vspl1 vspli-1 vspln-1

Mi

3,478 faces? No problem

Hoppe

Progressive Mesh

Hoppe

View-Dependent Simplification

• Simplify dynamically according to viewpoint
– Visibility

– Silhouettes

– Lighting

Hoppe

Remeshing

• Alternative to decimation

• Placing polygons to approximate shape vs. greedily
removing polygons from a complex one
– “Bottom up” vs. top-down

– Usually better approximation at a low polygon count

– Can place polygons in more “intuitive” places

Anisotropic Polygonal Remeshing

• Draw lines of curvature, place samples, connect
[Alliez et al., SIGGRAPH 03]

Variational Shape Approximation

• Grow close-to-planar patches, polygonize
[Cohen-Steiner et al., SIGGRAPH 04]

	Mesh Representation and Decimation
	Motivation
	Desirable Characteristics for�Mesh Data Structures
	Desirable Characteristics for�Mesh Data Structures
	Mesh Data Structures
	Independent Faces
	Indexed Face Set
	Indexed Face Set
	Efficient Algorithm Design
	Efficient Algorithm Design
	Full Adjacency Lists
	Full Adjacency: Issues
	Partial Adjacency Lists
	Partial Adjacency Lists
	Winged, Half Edge Representations
	Winged Edge
	Half Edge
	HalfEdge Data Structure (example)
	HalfEdge Walk Around Faces
	Mesh Decimation
	Mesh Decimation
	Mesh Simplification Considerations
	Mesh Decimation
	Primitive Operations
	Vertex Cluster
	Vertex Remove
	Edge Collapse
	Edge Collapse
	Pair Contraction
	Operation Considerations
	Geometric Error Metrics
	Vertex-Vertex Distance
	Surface-Surface Distance
	Veretx-Surface Distance
	Geometric Error Observations
	Vertex-Plane Distance
	Quadric Error Metrics
	Quadric Error Metrics
	Quadric Error Metrics
	Using Quadrics
	Using Quadrics
	Using Quadrics
	Quadric Visualization
	Results
	Results
	Progressive Mesh
	Progressive Mesh
	Progressive Mesh
	Progressive Mesh
	Progressive Mesh
	Progressive Mesh
	View-Dependent Simplification
	Remeshing
	Anisotropic Polygonal Remeshing
	Variational Shape Approximation

