Digital Photography with Flash and No-Flash Image Pairs

[Petschnigg 2004]

COS 526: Advanced Computer Graphics

Solution	Side effects
Long exposure time	Motion blur
Open the aperture	Reduced depth of field
Increase gain	Increase in noise
Use flash	Unnatural lighting

Solution	Side effects
Long exposure time	Motion blur
Open the aperture	Reduced depth of field
Increase gain	Increase in noise
Use flash	Unnatural lighting

Solution	Side effects
Long exposure time	Motion blur
Open the aperture	Reduced depth of field
Increase gain	Increase in noise
Use flash	Unnatural lighting

Solution	Side effects
Long exposure time	Motion blur
Open the aperture	Reduced depth of field
Increase gain	Increase in noise
Use flash	Unnatural lighting

Combining the Strengths of Both Images

- Ambient image denoising
- Flash to ambient detail transfer
- White balancing
- Red-eye correction
- Continuous flash adjustment

Acquisition

- 1. Focus on the subject, then lock the focal length and aperture.
- 2. Set exposure time Δt and ISO for a good exposure.
- 3. Take the ambient image A.
- 4. Turn on the flash.
- 5. Adjust the exposure time Δt and ISO to the smallest settings that still expose the image well.
- 6. Take the flash image F.

No-Flash

Flash

Denoising

- Bilateral filter
 - Removes noise while still maintaining edges
 - Gaussian weights in both domain and range
 - Just applied to noisy ambient image A (no use of flash image yet!)

$$A_p^{Base} = \frac{1}{k(p)} \sum_{p' \in \Omega} g_d(p' - p) g_r(A_p - A_{p'}) A_{p'}$$
normalization

weight based on spatial distance between pixels

weight based on intensity difference (edge-stopping)

No-Flash

No-Flash

No-Flash

No-Flash

260

300

Location

340

No-Flash

Location

No-Flash

Location

No-Flash

Location

No-Flash

Bilateral Filter

Denoising

- Problem: noise in A makes it hard to set range sigma
 - Too low: preserve edges due to noise
 - Too high: too much blurring (like plain Gaussian)
- Solution: joint bilateral filter
 - Edge-stopping function based on flash image F instead of A

$$A_p^{NR} = \frac{1}{k(p)} \sum_{p' \in \Omega} g_d(p' - p) g_r(F_p - F_{p'}) A_{p'}$$

Flash

Bilateral Filter

Flash

Location Flash Image

Flash

Location Flash Image

Bilateral Filter

Joint Bilateral Filter

Flash

Joint Bilateral Filter

Flash-To-Ambient Detail Transfer

- Joint bilateral filter can reduce noise, but cannot add detail present only in the flash image
- Compute a detail layer:

$$F^{Detail} = \frac{F + \mathcal{E}}{F^{Base} + \mathcal{E}},$$

 F^{Base} is computed using the basic bilateral filter on F.

• ... and apply it to the denoised ambient image:

$$A^{Final} = (1 - M)A^{NR}F^{Detail} + MA^{Base}$$

No-Flash

JBF & Detail Transfer

Flash-To-Ambient Detail Transfer

No-Flash

Detail Transfer with Denoising

Long Exposure Reference

Flash Shadows and Specularities

Orig. (top) Detail Transfer (bottom)

Detail Transfer without Mask

Flash Shadows and Specularities

- To avoid these artifacts, compute mask of locations where detail transfer is suppressed
 - For shadows, threshold on *linearized* intensity difference:

$$M^{Shad} = \begin{cases} 1 \text{ when } F^{Lin} - A^{Lin} \le \tau_{Shad} \\ 0 \text{ else} \end{cases}$$

- For specularities, luminance above 95%
- Masks are merged and feathered

Flash

No-Flash

Flash Difference No-Flash

Flash Shadows and Specularities

Flash Shadows and Specularities

White Balancing

- Flash adds light source of known color to the scene
- Illumination due to the flash only: $\Delta = F^{Lin} A^{Lin}$
- Estimate ambient illumination at the surface:

$$C_p = rac{A_p}{\Delta_p}$$
 Note typo in paper...

- Take mean over sufficiently-bright pixels in image to infer ambient illumination color c
- White balance by dividing each pixel by c

Flash

No Flash

Assumptions

- Single ambient illuminant
- Flash is white
- Lambertian reflectance

Flash

No Flash

Assumptions

- Single ambient illuminant
- Flash is white
- Lambertian reflectance

Assumptions

- Single ambient illuminant
- Flash is white
- Lambertian reflectance

Lambertian reflectance

No-Flash

Result

Illuminant Estimate

Red-Eye Correction

- Convert the pair to YCbCr space (decorrelates luminance from chrominance)
- Compute a relative redness measure:

$$R = F_{Cr} - A_{Cr}$$

- Segment the image into regions where $R > au_{Eye}$
- Select regions containing seed pixels where

$$R > \max[0.6, \mu_R + 3\sigma_R]$$
 and $A_Y < \tau_{Dark}$

and check that region is circular and not too big

Flash

No-Flash

Red-Eye Correction

Continuous Flash Adjustment

 Convert Flash and Ambient images to YCbCr space and interpolate linearly:

$$F^{Adjusted} = (1 - \alpha)A + (\alpha)F$$

Figure 10: An example of continuous flash adjustment. We can extrapolate beyond the original flash/no-flash pair.

Summary

- Multiple methods used to combine strengths of both flash and no-flash images
 - ambient image denoising
 - flash to ambient detail transfer
 - white balancing
 - red-eye correction
 - continuous flash adjustment
- Techniques that generalize to other applications:
 - (joint) bilateral filter, multi-scale decomposition, reflectance/illumination separation