COS 526: Advanced Computer Graphics

What is Computational Photography?

 The use of computational techniques to overcome the limitations of traditional photography

Camera controls:

Viewpoint

Lens

Shutter speed

Aperture

Sensor

• Pin-hole camera:

• Pin-hole size?

Photograph made with small pinhole

Photograph made with larger pinhole

- Pin-hole size?
 - Smaller produces sharper image (up to limits of diffraction)
 - Larger lets in more light

2.18 DIFFRACTION LIMITS THE QUALITY OF PINHOLE OPTICS. These three images of a bulb filament were made using pinholes with decreasing size. (A) When the pinhole is relatively large, the image rays are not properly converged, and the image is blurred. (B) Reducing the size of the pinhole improves the focus. (C) Reducing the size of the pinhole further worsens the focus, due to diffraction. From Ruechardt, 1958.

Lenses

• Lens *systems* use many lenses to overcome limitations of single lenses

- Lenses
 - + More light
 - + Sharp ...
 - at one depth

Photograph made with small pinhole

To make this picture, the lens of a camera was replaced with a thin metal disk pierced by a tiny pinhole, equivalent in size to an aperture of f/182. Only a few rays of light from each point on the

subject got through the tiny opening, producing a soft but acceptably clear photograph. Because of the small size of the pinhole, the exposure had to be 6 sec long.

Photograph made with lens

This time, using a simple convex lens with an f/16 aperture, the scene appeared sharper than the one taken with the smaller pinhole, and the exposure time was much shorter, only 1/100 sec.

The lens opening was much bigger than the pinhole, letting in far more light, but it focused the rays from each point on the subject precisely so that they were sharp on the film.

From Photography, London et al.

Single depth of focus

Limited resolution

Limited dynamic range

Single viewpoint

Static scene

Blur, camera shake, noise, damage

Unfortunate expressions

Unwanted objects

Computer Graphics

Computational Photography

Realism
Manipulation
Ease of capture

Photography

- + easy to manipulate objects/viewpoint
- hard to acquire/create
- •- hard to make realistic

- hard to manipulate objects/viewpoint
 - + easy to acquire
- + instantly realistic

• Example: high-dynamic range

Example: deblurring

• Example: super-resolution

• Example: creating panoramas

Example: gigapixel images

Example: color harmonization

• Example: background replacement

(b) result 1 (a) input result 2

• Example: image completion

• Example: image completion

• Example: tour into the picture

Example: photo tourism

High Dynamic Range Imaging

Dynamic Range

1

The real world is high dynamic range.

25,000

1500

2,000,000,000

Problem

 Cameras cannot capture the full dynamic range of the world

Long Exposure

Short Exposure

Ways to Vary Exposure

Shutter Speed (*)

F/stop (aperture, iris)

Neutral Density (ND) Filters

Varying Shutter Speed

Ranges: Canon D30: 30 to 1/4,000 sec.

Sony VX2000: 1/4 to 1/10,000 sec.

- Pros:
 - Directly varies the exposure
 - Usually accurate and repeatable
- Issues:
 - Noise in long exposures

Varying Shutter Speed

• Shutter times *approximately* obey a power series: 1/4, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec

Varying Shutter Speed

High Dynamic Range Imaging

 Infer radiance of scene from multiple images with varying exposure (photometric calibration)

General Approach

- Build model of imaging system (radiance → pixel values)
- Invert model
 (pixel values → radiance)

Imaging System?

Imaging System Response Function

Recovering the Response Curve

Image series

Pixel Value Z = f(Exposure)

Exposure = Radiance $\cdot \Delta t$

 $\log \text{ Exposure} = \log \text{ Radiance} + \log \Delta t$

Recovering the Response Curve

Assuming unit radiance for each pixel

After adjusting radiances to obtain a smooth response curve

Recovering the Response Curve

- Let g(z) be the discrete inverse response function
- For each pixel site *i* in each image *j*, want: $\log Radiance_i + \log \Delta t_i = g(Z_{ii})$

Solve the overdetermined linear system via least squares:

$$\sum_{i=1}^{N} \sum_{j=1}^{P} \left(\log Radiance_i + \log \Delta t_j - g(Z_{ij}) \right)^2 + \lambda \sum_{z=Z_{min}}^{Z_{max}} g''(z)^2$$

fitting term

smoothness term

Results: Digital Camera

Kodak DCS460 1/30 to 30 sec

Recovered response curve

log Exposure

Reconstructed Radiance Map

Results: Color Film

Kodak Gold ASA 100, PhotoCD

Recovered Response Curves

The Radiance Map

W/sr/m2 121.741 28.869 6.846 1.623 0.384 0.091 0.021 0.005

The Radiance Map

Linearly scaled to display device

Now What?

W/sr/m2 121.741 28.869 6.846 1.623 0.384 0.091 0.021 0.005

Tone Mapping: HDR Content on LDR Devices

Reinhart et al

$$L_{display} = \frac{L_{world}}{1 + L_{world}}$$

Reinhart et al Results

Reinhart et al Comparison

Reinhart Operator

Darkest 0.1% scaled to display device

Fattal et al (in 1D)

Fattal et al Comparison

Fattal et al Comparison

HDR Tone Mapping Example

