
princeton univ. F’18 cos 521: Advanced Algorithm Design

Lecture 21: Compressed Sensing

Lecturer: Christopher Musco

This lecture is an introduction to compressed sensing. Also known as sparse recovery,
compressed sensing is a research area that spans signal processing, imaging, statistics, al-
gorithms, and many other research areas. It is closely connected to every previous section
of this course.

1 General Setup

The basic set up for compressed setting is as follows:

• There is hidden vector x ∈ Rn which is k-sparse1. I.e. ‖x‖0 = k.

• We can access m linear measurements of x of the form aT1 x, . . . , a
T
mx.

• We want to recover x from these measurements, i.e. from y = Ax where A =
[a1, . . . , am]T .

This may sound like an artificial problem, but it arises very frequently in applications. We
will discuss a few examples shortly.

There are two main questions to ask about the compressed sensing problem. First, when
is recovery of x possible? We won’t assume anything about x besides its sparsity, so this
question becomes, for what matrices A is recovery possible for any sparse vector x? Ideally
we want A to have few rows – i.e. to recover x from a small number of linear measurements.
The second important question is if x can be recovered efficiently from Ax.

The idea is to leverage the sparsity of x. A general n dimensional vector x can only be
recovered from y = Ax if A is left invertible: we just compute A−1y = A−1Ax = x. This
requires A to have at least m = n rows. The hope is to achieve m� n rows by exploiting
the fact that x is sparse.

1.1 Applications

Below are a few example applications of the compressed sensing problem. In these applica-
tions, we would typically be interested in slightly more general version of the problem posed
above – e.g., the case when x is close to but not quite k sparse. We might assume that
‖x− x̃‖2 ≤ ε for some x̃ with ‖x̃‖0 = k. When this is the case, we would hope to recover x̃,
or a vector close to it. We can think about this as recovering the k largest entries in x.

We consider the simpler problem in this lecture, but similar techniques generalize to
more realistic “noisy” settings.

1In reality, we often care about the scenario when x is close to k sparse. The algorithms discussed in this
lecture extend to that setting.

1



2

Example 1 (Streaming heavy-hitters / frequency estimation ). We are given a stream of
updates to a vector x ∈ Rn of the form x ← x ± ei, where ei is a standard basis vector.
We want to maintain a compressed representation of x (i.e. in � n space) so that, after
our stream of updates, we can estimate the k values of x with largest magnitude – these are
often call the “heavy-hitters” in x.

A common way to solve this problem is to maintain some vector y ∈ Rm which is
initialized with y = 0 and, at each update, updated to y±Aei for some specifically designed
matrix A ∈ Rm×n. The value of this approach is that, at the end of the stream, no matter
how many updates were received, or in what order, we will have y = Ax. If we can extract
x’s heavy entries from y, which requires solving the compressed sensing problem, we have
solved our streaming heavy-hitters problem.

The heavy hitters problem is very closely related to our homework problem on frequency
estimation, where our goal was to output an estimate for each xi. However, these estimates
were only accurate for the top few largest entries in xi: for small entries it would suffice to
output an estimate of 0. So, algorithms for finding heavy-hitters can be used for frequency
estimation.

Here is a very cartoonish picture of another application of compressed sensing to imaging
technology. This is the “killer app” that most people think of when they think about
compressed sensing.

Example 2 (Subsampled Fourier transform). Consider the discrete Fourier transform ma-
trix D ∈ Rn×n where:

Dhl = e
−2πi
n

h·l

Dx is equal to the discrete Fourier transform of the signal x. Think of each row of D as a
complex sinusoid with frequency h

n evaluated at ` = 1, 2, . . . , n. [Dx]k is the inner product

of x with this sinusoid and thus represents how much of frequency h
n is contained in x.

Think of x as representing the pixels in an image. Many advanced image acquisition
techniques, like MRI or ultrasound, can be modeled as obtaining entries of Dx and recon-
structing x from those entries. If we collect all entries of Dx, we can find x by simply
applying an inverse DFT to Dx. But this can be very expensive in practice. Each entry
from the vector Dx is collected by some physical process – i.e. by blasting the object your
imaging with a sound or light wave of a particular frequency. So, the more samples we
collect, the more time the MRI takes, or the slower the ultrasound.

Compressed sensing asks whether its possible to recover x if we only collect a subset of
Dx. We might hope that this is possible if the image data x is sparse, which is the case in
many imaging applications. One common approach for choosing a subset of Dx is to sample
entries uniformly at random. I.e. to compute SDx for a sampling matrix S ∈ Rm×n where
each row of S contains a single 1 in a uniformly random location, and all 0s elsewhere. In
this case, A = SD.

There is a major difference between Examples 1 and 2. In the first, we have complete
of freedom in how A is designed. In Example 2 we do not – it must be some subset of rows
rows D.



3

2 Restricted Isometry Property

In this lecture we will try to understand basic conditions on A that allow us to solve the
sparse recovery problem with < n measurements. Ideally these are conditions that can be
easily “designed into” A, or hold for certain measurement matrices that arise in practice
(like subsampled DFT matrices).

We focus on the following property that has been especially important in understanding
compressed sensing:

Definition 1 ((q, ε)-Restricted Isometry Property). A matrix A satisfies (q, ε)-RIP if, for
all x with ‖x‖0 ≤ q,

(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22.

The RIP property is a Johnson-Lindenstrauss type condition. It requires that A pre-
serves the norm of all q sparse vectors, instead of the norms of a fixed discrete set of vectors.
What matrices satisfy this property?

• Random Gaussian matrices with O( q log(n/q)
ε2

) rows. You proved a very slightly weaker
version of this result in Howework 3.

• Uniformly subsampled Fourier matrices with O(q log4 n/ε2) rows [1] (or see [2]). You
have seen some of the tools to prove this. In Lecture 11 we proved that a subsampled
Hadamard matrix, which is a type of Fourier matrix, can be used to give the JL
gaurantee. Your Homework 3 argument would thus apply to these matrices as well.
Proving RIP for actual Fourier matrices isn’t too much of a leap.

• Explicit deterministic constructions withO(q2) rows (and slightly better [3]). Whether
or not O(q log n) is possible with a deterministic construction is a major open question.

Ultimately, we will show that any matrix A which satisfies (O(k), O(1))-RIP can be used
as a measurement matrix to reconstruct any k sparse vector x. With these parameters, every
construction above allows for a number of measurements m� n. The first two constructions
(random Gaussian and random Fourier) reconstruct x from a compression y = Ax of near
optimal size. Roughly it takes k log n bits just to specify x: we at least need to record where
all of its k non-zero entries are and each location takes log n bits to specify.

A first result on using RIP matrices for compressed sensing is as follows:

Theorem 1 (`0-minimization). If A is (2k, ε)-RIP for any ε < 1 and ‖x‖0 = k then z? = x
is the unique minimizer of:

min‖z‖0 subject to Az = Ax.

In other words, if we measure x with linear measurements from a (2k, ε)-RIP matrix A,
we can recover the vector from Ax = y by solving the simple minimization problem above.
The sparsest z satisfying Az = y will be equal to x. This minimization problem cannot be
solved in polynomial time, but there is an O(nk) time solution: brute force over all subsets
of ≤ k entries and check (via linear regression) if there exists some z supported on those
entries that satisfies y = Az.



4

Proof. Suppose there is some optimal solution z 6= x. So ‖x − z‖ 6= 0. Since it is optimal
for the `0 minimization problem, it must be that ‖z‖0 ≤ ‖x‖0 = k So x − z is at most
2k-sparse. It follows from the (2k, ε)-RIP property of A that:

(1− ε)‖x− z‖2 ≤ ‖Ax−Az‖2.

However, if Az = Ax, ‖Ax−Az‖2 = 0, so we have a contradiction if ε < 1: the right hand
side is positive but the left side is 0. So it must be that any optimum z is equal to x.

Theorem 1 established that, information theoretically, it is possible to recover x from
the linear measurements Ax when A satisfies (O(k), O(1))-RIP. This is already interesting
from a practical perspective, but the result would be much more useful if `0-minimization
was not so slow. Ideally, we recover x from Ax in polynomial time.

3 Basis Pursuit

It’s possible to obtain a polynomial time algorithm by relaxing the `0 minimization problem:

Problem 2 (Basis Pursuit, i.e. `1 minimization.). Solve the following linear program:

min‖z‖1 subject to Az = Ax.

Why is this a linear program? Let y = Ax. By introducing n additional variables
[w1, . . . , wn], the above minimization problem can be written as:

min 1Tw s.t. Az = y, zi ≤ wi ∀i, −zi ≤ wi ∀i.

This is a linear objective function with linear constraints, so Problem 2 can be solved in
polynomial time.

Problem 2 relaxes the `0 minimization problem of Theorem 1 by replacing the non-
convex objective function ‖z‖0 with ‖z‖1. Why should this be a good relaxation?

In general, an `1 norm objective promotes sparsity when combined with a linear con-
straint. Figure 1 gives some intuition. In blue, level sets of ‖z‖1 are drawn. Finding the
z with smallest `1 norm is equivalent to finding the point on the line defined by Ax = y
which intersects the innermost level set (in this case, we have n = 2, so choose A to have
just one row).

As we can see, for lines in general position (i.e. random A), with overwhelming prob-
ability, the minimum `1 norm solution will lie at a vertex of a level set, meaning that it
will be 1-sparse. This same intuition extends roughly to high dimensions: low dimensional
lines/planes are more likely to intersect vertices or edges of the `1 level sets, which means
that we often obtain sparse solutions from `1 minimization.

This stands in contrast to e.g. `2 minimization, which as picture in Figure 1, does not
promote sparsity.

Our intuition is formalize in the following theorem:

Theorem 3. If A is (3k, ε)-RIP for ε < .17 and ‖x‖0 = k, then z? = x is the unique
optimal solution of Problem 2 (the basis pursuit linear program).



5

(a) Vertices of level sets of `1 norm correspond
to sparse solutions.

(b) This is not the case e.g. for the `2 norm.

Figure 1: The goal of interior point methods is to move towards an optimal solution while
avoiding immediately approaching the boundary of K.

This theorem only increases the parameter requirements for the RIP property by a
constant factor. So for random Gaussian matrices or subsampled Fourier matrices, it still
allows recovery with O(k logc n) samples. However, the recovery algorithm now runs in
polynomial time.

Our proof is similar to that of Theorem 1. If we can show that any two solutions
to the basis pursuit linear program must differ by a sparse vector, then we will obtain a
contradiction.

In particular, assume there exists some minimizer z for Problem 2 where z 6= x. Write
z = x + ∆. If z 6= x, it must be that ‖∆‖2 > 0. At the same time ‖A∆‖2 = 0. Since A
satisfies an RIP condition, both of these statements cannot be true when ∆ is sparse. To
prove Theorem 3, we will extend this argument to when ∆ is approximately sparse – i.e.
it’s `2 norm is concentrated on a small number of indices.

We start with the following claim:

Claim 4. Let S ⊂ {1, . . . , n} be the set of indices in x with non-zero value. I.e. if i ∈ S,
xi 6= 0. Let S̄ denote {1, . . . , n} \ S. Since x is k-sparse, |S| ≤ k. We claim:

‖∆S‖1 ≥ ‖∆S̄‖1

Here ∆S denotes the vector restricted to indices in S (i.e. if you zero’d out all other
indices). ∆S̄ denotes the vector restricted to indices in S̄.

Proof.

‖x‖1 ≥ ‖x+ ∆‖1 = ‖xS + ∆S‖1 + ‖∆S̄‖1 ≥ ‖xS‖1 − ‖∆S‖1 + ‖∆S̄‖1

Rearranging terms proves.

This bound already suggests that ∆ is somewhat well concentrated on the k indices in
S. Our next step is to convert this bound to one involving `2 norms:



6

Claim 5. Let T1, T2, . . . be sets of size 2k. T1 contains the indices of the first 2k largest
entries in ∆S̄. T2 contains the indices of the next 2k largest entries, so on and so forth.
We claim:

‖∆S‖2 ≥
√

2
∑
j≥2

‖∆Tj‖2

Proof. In this proof we use that fact that for all b with ‖b‖0 ≤ w,

‖b‖2 ≤ ‖b‖1 ≤
√
w‖b‖2.

The lower bound ‖b‖2 = ‖b‖1 is achieved when b is zero on all indices besides one. The
upper bound ‖b‖1 =

√
w‖b‖2 is achieved when b has equal value on exactly w vertices. From

the previous claim, we have:

‖∆S‖1 = ‖∆S̄‖1 ≥
∑
j≥1

‖∆Tj‖1. (1)

We then have that for all j ≥ 1,

‖∆Tj‖1 ≥
√

2k‖∆Tj+1‖2 (2)

Why? Every entry in ∆Tj+1 is less than the minimum entry in ∆Tj , which is ≤ ‖∆Tj‖1/2k.
So we have;

‖∆Tj‖22 =
∑
i∈Tj

|∆i|2 ≤
∑
i∈Tj

(‖∆Tj+1‖1
2k

)2

≤ 2k ·
‖∆Tj+1‖21

(2k)2
.

This establishes 2, which substituted into (1) gives:

‖∆S‖1 ≥
√

2k
∑
j≥2

‖∆Tj‖2.

Claim 5 follows because ‖∆S‖1 ≤
√
k‖∆S‖2.

We are now ready to prove the main result:

Proof of Theorem 3.

0 = ‖A∆‖2 ≥ ‖A∆s∪T1‖2 −
∑
j≥2

‖∆Tj‖2 (triangle inequality)

≥ (1− ε)‖∆s∪T1‖2 − (1 + ε)
∑
j≥2

‖∆Tj‖2 RIP property of A

≥ (1− ε)‖∆s‖2 −
(1 + ε)√

2
‖∆s‖2

≥
(

1− ε− (1 + ε)√
2

)
‖∆s‖2

which is a contradiction if
(

1− ε− (1+ε)√
2

)
≥ 0, which happens as long as ε . .17.



7

4 Other considerations

4.1 Noise Robustness

The astute student who has been reading engineering papers in French from the 18th century
might have noticed that in fact, it is has long been known how to recover a k sparse signal
x from exactly 2k Fourier measurements! This was show by Prony in 1795 [5] using a
deterministic, polynomial time algorithm. You can find an analysis here: http://pages.

cs.wisc.edu/~brecht/cs838docs/Lecture06.pdf.
What gives? With Prony’s method in hand, why does the field of compressed sensing

exists at all? The major reason is noise. Prony’s method and related approaches (e.g. the
matrix pencil method) depend on solving highly ill-conditioned linear systems. They often
fail due to finite precision computation or when linear measurements are collected in an
inexact way imprecise. Moreover, Prony’s method fails whenever x is not exactly k-sparse,
even if it is very close to k-sparse.

As mentioned, this is nearly always the case in practice. The Basis Pursuit approach
adapts naturally to the noisy problem with an analysis very similar to the one seen here (see
e.g. http://people.seas.harvard.edu/~minilek/cs229r/fall13/lec/lec16.pdf.)

Another major advantage of Basis Pursuit and related compressed sensing methods
is that they are not specific to Fourier matrices – they work for much broader classes of
measurement matrices (e.g. anything satisfying RIP).

4.2 Faster Methods

While Basis Pursuit gives a beautifully simple and robust polynomial time algorithm, there
has been a lot of interest in developing even faster algorithms that avoid using the “heavy
hammer” of linear programming. One example of such an algorithm is Iterative Hard
Thresholding [4], which looks a lot like the projected gradient descent method we saw in
class. The idea is to solve minz ‖z − Ax‖ via a gradient method, while continually pro-
jection z back to the set of k-sparse vectors. While this set is not convex it’s possible to
show that the method still converges very rapidly. See http://people.seas.harvard.edu/

~minilek/cs229r/fall13/lec/lec18.pdf for an analysis. The runtime of the method is
approximately O(nk log n) for Gaussian measurement matrices and O(n log n) for subsam-
pled Fourier matrices. Other “first order” type methods obtain similar running times. If you
are interested in learning more, some algorithms to look up include “Orthogonal Matching
Pursuit”, ”CoSaMP”, and “Subspace Pursuit”.

4.3 Even Faster Methods

Remarkably, for a subsampled Fourier measurement matrix, it’s actually possible to go
even faster! In particular, the linear dependence on n can be reduced to a logarithmic
dependence, giving algorithms that run in O(k logc n) time. See [6] and the earlier results
cited in that paper.

Methods achieving this sort of runtime are refered to as “Sparse Fourier Transform”
algorithms. Notably, they run faster than the time to compute the Fourier transform
of a length n signal. Accordingly, SFT algorithms are useful beyond compressed sensing.

http://pages.cs.wisc.edu/~brecht/cs838docs/Lecture06.pdf
http://pages.cs.wisc.edu/~brecht/cs838docs/Lecture06.pdf
http://people.seas.harvard.edu/~minilek/cs229r/fall13/lec/lec16.pdf
http://people.seas.harvard.edu/~minilek/cs229r/fall13/lec/lec18.pdf
http://people.seas.harvard.edu/~minilek/cs229r/fall13/lec/lec18.pdf


8

Suppose we have the entire vector y = Dx in hand (i.e. there is no measurement acquisition
cost) and we believe that x is sparse (as is often the case in practice). We can compute x
more quickly by using an SFT algorithm (which begins by selecting a subset of entries in
y) than by computing the inverse Fourier transform x = D−1y.

Even these faster algorithms have a linear dependence on n. There’s no obvious reason
this should be necessary as our input Ax and output x are both of size O(k logc n).

Note that all of these methods are specific to Fourier measurement matrices – they do
not work for general RIP matrices.

References

[1] Rudelson, M. and Vershynin, R., On sparse reconstruction from Fourier and Gaussian
measurements. Comm. Pure Appl. Math., 61: 1025-1045, 2008.

[2] Haviv, Ishay and Regev, Oded, The Restricted Isometry Property of Subsampled Fourier
Matrices. Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 288–297, 2016.

[3] Jean Bourgain, Stephen Dilworth, Kevin Ford, Sergei Konyagin, and Denka Kutzarova,
Explicit constructions of RIP matrices and related problems. Duke Math. J., 159:1 145–
185, 2011.

[4] Thomas Blumensath and Mike E. Davies, Iterative hard thresholding for compressed
sensing. Applied and Computational Harmonic Analysis, 27:3, 265–274, 2009.

[5] Gaspard Riche de Prony, Essay experimental et analytique: sur les lois de la dilatabilite
de fluides elastique et sur celles de la force expansive de la vapeur de l’alcool, a differentes
temperatures. Journal de l’Ecole Polytechnique, 24–76. 1795.

[6] Haitham Hassanieh, Piotr Indyk, Dina Katabi, Eric Price, Nearly optimal sparse fourier
transform. Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of
Computing (STOC), 2012.


	General Setup
	Applications

	Restricted Isometry Property
	Basis Pursuit
	Other considerations
	Noise Robustness
	Faster Methods
	Even Faster Methods


