
princeton univ. F’18 cos 521: Advanced Algorithm Design

Lecture 17: Interior Point Methods

Lecturer: Christopher Musco

1 Convex Optimization

Recall that we are interested in solving problems of the form:

min f(x) for x ∈ K,

where f is a convex function and K is a convex set.
We have already analyzed gradient descent for this problem, which used a projection

oracle for K and a gradient oracle for f to provide relatively low-accuracy solutions. The
Ellipsoid Method used a separation oracle to provide higher accuracy solutions, but
typically at a greater computational cost.

1.1 Linear programming

Today we are interested in the important special case of linear programming where:

f(x) = cTx, K = {x | Ax ≥ b}

for A ∈ Rn×d, c ∈ Rd, b ∈ Rn.
The Ellipsoid Method was developed through the efforts of many mathematicians: Shor,

Yudin, Nemirovskii, and others. However, if first gained a lot of attention when Katchiyan
showed in 1979 [1] that it could be used to solve linear programs in polynomial time (with
a dependency on L, the number of bits required to specify A, b, and c.)

As the first polynomial time solution for this ubiquitous problem, this discovery was so
important that it was reported in the New York Times! However, the Ellipsoid Method
did not immediately impact how linear programs were solved in practice. It is much slower
than the Simplex method, which runs in exponential time in the worst case, but performs
very well in practice1.

Nevertheless, the Ellipsoid method was very influential theoretically – it helped launch
a flurry of work on linear programming, which ultimately lead to a completely different
polynomial time solution for the problem. In 1984, Karmarkar developed an Interior Point
Method for solving linear programs [2], which was asymptotically faster than ellipsoid and,
more importantly, performed much better in practice (it also made the New York Times).
While it did not immediately unseat Simplex, after a few decades of improvement, the
fastest linear programming libraries today are typically based on interior point methods.

1There has been a lot of interest in understanding why Simplex performs much better than its worst case
complexity suggests. This question lead to influential work on “smoothed analysis” of algorithms [3].

1

2

2 High Level Strategy

Interior point methods are based on a very different strategy than the Ellipsoid method.
The idea is to start inside the convex set K – i.e. to start at an “interior point”.

2.1 Aside: how to start inside the polytope

This might seem problematic – when analyzing the ellipsoid method, we reduced the entire
problem to finding a point in K. Shouldn’t this be a hard problem? The trick is use another
linear program, which has a trivial interior point, to find a starting point for our original
linear program. To solve the original linear program, we will first solve this “Phase 1” linear
program to find a starting point. In particular, consider:

min t s.t.

Ax ≥ (1− t)b,
t ≥ 0.

If the optimal solution t? > 0 then our original linear program is infeasible. If t? = 0 then
x? satisfies Ax? ≥ b, so is a starting point inside our original polytope. At the same time,
this new linear program has a trivial starting point: (x, t) = (~0, 1), so it can be solved using
an interior point method, or any other method that needs a starting point in K.

(a) Gradient Descent optimization path. (b) Ideal Interior Point optimization path.

Figure 1: The goal of interior point methods is to move towards an optimal solution while
avoiding immediately approaching the boundary of K.

Okay, so we have an interior point. To get some intuition, let’s think about how gradient
descent would begin optimizing from this point. Note that:

∇f(x) = c for all x

As depicted in Figure 1, following the gradient would thus cause use to move straight
in the diection of −c, until we hit a face of K, at which point we would move outside of
the polytope and need to project back. As shown, the boundary makes it very hard to
use gradient information to make rapid progress. The Simplex method avoids this issue
by jumping along edges of the polytope from one vertex to the other, but unfortunately,

3

choosing which direction to not obvious and poor choices can lead to cycling, stalling, and
ultimately an exponential number of steps.

Interior point methods, on the other hand, try to avoid reaching the boundary of K
entirely (at least until they are nearly done). The idea is to still proceed in iterations, but
if we examine the path of iterates, our approximate solutions move more directly towards
the optimal, all while staying inside K.

3 The Barrier Function

To do so, interior point methods solve a sequence of (slightly) changing optimization prob-
lems. These problems replace the hard constraint that x ∈ K with a “smoother” objective
function term that increases as x gets closer and closer to the boundary of K. In particular,
we solve the intermediate problem:

Problem 1 (Smoothly constrained linear optimization). For scalar w ≥ 0 and convex
function B with B(x)→∞ as x→ ∂K (we use ∂K to denote the boundary of K)

minFw(x) = wcTx+B(x).

A typical choice for B is the “log barrier” B(x) =
∑n

i=1− log(aTi x− bi).

Note that, since both B(x) and f(x) are convex, Fw(x) is always convex for w ≥ 0.
Let x?(w) be the optimal solution for Fw. x?(0) is called the “analytic center” of the

polytope K. It has nothing to do with c at all. As w approaches infinity, x?(w) converges
towards the optimal solution for the linear program.

The curve traced by x?(w) for w = 0→∞ is called the “central path”. A key observation
is that, for a small change ∆, x?(w + ∆) is close to x?(w). We will take advantage of this
property by solving Fw for slowly increasing values of w, starting with w = 0. For each
value of w, Fw will itself be solved via an iterative method, but initialized with the optimal
solution for our previous value of w, which ensures rapid convergence.

This yields the following outline for the interior point method that we will analyze:

Interior Point Method:

1. Start at (or really close to) x?(0).

2. Choose a sequence of geometrically increasing values w1, . . . , wT with wi+1 = (1+q)wi.

3. For i = 1, . . . , T , use Newton’s method to find x?(wi) = arg minF (wi), using
x?(wi−1) as a starting point.2

4. Return x?(wT).

We do not discuss the first initialization step in depth, although I will point to references
with more details at the end of the lecture.

2In reality, we will only be able to find each x?(wi) approximately. Dealing with this detail complicates
the analysis, without changing it substantial, but again more details can be found in [4].

4

Since our choices for w increase geometrically, the number of iterations T will ultimately
depend on log(wT /w1). If we choose wT = n/ε, we get a solution within cT [x?(wT)] ≤
cTx? + ε, where x? is the true optimum for the linear program. See [4] or http://people.
seas.harvard.edu/~cs224/fall14/lec/lec17.pdf for a short proof. Moreover, for linear
programs with bounded integer inputs which take a total of L bits to represent, we can set
w1 = 2−O(L). Overall, this will lead to an iteration complexity of O

(
log1+q(2

Ln/ε)
)
. For

small q, this approximately equals O
(
1
q · L log(n/ε)

)
.

4 Newton’s Method

The “inner loop” of our interior point method uses Newton’s method to optimize the un-
constrained convex function Fw(x). This is good method to know about in general and it
is used well beyond interior point methods. Its distinction from gradient descent is that
Newton’s method uses second order information about f . This allows it to converge much
faster than gradient descent, even when the function we are optimizing is poorly behaved
(e.g. ‖∇f(x)‖2 is huge). This will be the case for our objective + barrier function, which
has gradient:

∇Fw(x) = ∇

[
cTx−

n∑
i=1

log(aTi x− bi)

]
= wc+

n∑
i=1

1

(aTi x− bi)
· ai.

This gradient blows up as x gets close the boundary of K.
Newton’s method is “immune” to this blow up, but with one caveat: it typically only

converges is we start pretty close to the optimum of our function. This makes it well tailored
to our interior point scheme, where we obtain a good starting point for optimizing Fwi from
our solution to minFwi−1 .3

4.1 The Hessian

Newton’s method uses second order information in the form of the Hessian of the function
it’s trying to minimize. Recall that the gradient of a function f is:

∇f(x) =


∂f
∂x1
∂f
∂x2
...
∂f
∂xd


3There are modified versions of Newton’s method that are “globally convergent” for convex functions,

meaning that they can be initialized with any value and still converge (just like gradient descent). However,
there’s a trade off – these versions require at least some bounds on how well behaving f ’s gradient is.

http://people.seas.harvard.edu/~cs224/fall14/lec/lec17.pdf
http://people.seas.harvard.edu/~cs224/fall14/lec/lec17.pdf

5

I.e. the gradient is a vector containing all partial first derivatives of f . The Hessian, ∇2f(x)
is a d× d matrix containing all partial second derivatives of f :

∇2f(x) =


∂2f

∂x1∂x1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xd

∂2f
∂x2∂x1

. . .
...

...
. . .

...
∂2f

∂xd∂x1
· · · · · · ∂2f

∂xd∂xd


One way to think about the Hessian is that is measures how the gradient changes. For
small z, ∇f(x+ z) ≈ ∇f(x) + [∇2f(x)]z.

For convex functions ∇f(x) is positive semidefinite for all x. I.e.

yT∇f(x)y ≥ 0 ∀y.

Exercise 1. Prove this. And also prove that, if ∇f(x) is positive semidefinite for all x,
then f is convex.

Let’s look at an example:

f(x) = ‖Ax− b‖22 = xTATAx− 2bTAx+ bT b

We have:

∇f(x) = 2ATAx− 2bTA

∇2f(x) = 2ATA

2ATA is positive semidefinite because 2zTATAz = 2‖Az‖22 ≥ 0 for all z.
For the function we’re looking at today we have:

∇Fw(x) = wc+

n∑
i=1

1

(aTi x− bi)
· ai

∇2Fw(x) =
n∑

i=1

1

(aTi x− bi)2
· aiaTi .

To see that ∇2Fw(x) is PSD, note that it can be written as ADAT for a positive diagonal
matrix D.

4.2 Iteration

We are ready to define a standard version of Newton’s method:

Newton’s Method

• Choose initialization points x0.

6

• For i = 1, . . . T , set xi+1 = xi − [∇2f(xi)]
−1∇f(xi)

This method should look very similar to gradient descent. It proceeds by subtracting a
term depending on ∇f(xi) from xi. However, this direction is “modified” by multiplying
is by the matrix [∇2f(xi)]

−1. Doing so ultimately provides a better search direction than
gradient descent.

In the most extreme case, consider f(x) = ‖Ax − b‖22. Suppose we start at x0 = ~0.
∇f(~0) = −2bTA and [∇2f(xi)]

−1∇f(xi) = (2ATA)−12AT b = (ATA)−1AT b, which is the
optimal solution for `2 regression. So we solve the problem in one step using Newton’s
method! This does not happen for general functions, but there is typically a lot to gained
by looking at the Hessian.

There is of course a cost: computing and inverting ∇2f(xi) at each step of our iterative
method can be much more expensive than e.g. a gradient step. For the problems considered
here, ∇2f(xi) takes O(nd2) time to construct and O(d3) time to invert. This cost needs to
be offset by a fast convergence rate.

4.3 Convergence

There are many ways to measure convergence of an iterative method. When analyzing
gradient descent we showed that for an approximate optimum x̃:

|f(x̃)− f(x?)| ≤ ε.

We could also have asked that

‖x̃− x?‖ ≤ ε,

or even that

‖∇f(x̃)‖ ≤ ε,

since ‖∇f(x?)‖ = 0 for any optimum x?. While these metrics may not be directly compa-
rable, they are all valid ways of understanding how close x̃ is to optimal.

One common way of analyzing Newton’s method considers convergence in a matrix
known as the “Newton’s decrement”:

Definition 1 (Newton Decrement). The Newton decrement of a function f at point x,
λf (x), is defined:

λf (x) =
√
∇f(x)T [∇2f(x)]−1∇f(x)

Since ∇f(x?) = 0, we have that λf (x?) = 0 at any minimizer x?. We can also write
λf (x)2 = ‖[∇2f(x)]−1∇f(x)‖2∇2f(x), so it’s a measure of how small our gradient is, which
intuitively is a good measure of how close we are to a minimizer.

To establish convergence in the Newton’s decrement metric, we need to make an addi-
tional assumption on the function f we are optimizing, in addition to its convexity:

7

Theorem 2 (Convergence of Newton’s method). If for all x, ∇3f(x)[h, h, h] ≤ 2
(
hT∇2f(x)h

)3/2
(this property is called self-concordance) for all h, then:

λf (x− [∇2f(x)]−1∇f(x)) ≤
(

λf (x)

1− λf (x)

)2

Note that for our smoothly constrained linear programs, ∇3Fw and ∇2Fw only depend
on the barrier function B, so our assumption applied to interior point methods will actually
be that B is “self-concordant”.

The self-concordance property bounds the size of the third derivative of a function, which
relates to the smoothness of ∇2f(x). This makes sense – for second order information to
be useful in quickly progressing towards an optimum, it should be relatively consistent as
x changes. Above we consider the extreme case of f(x) = ‖Ax− b‖22, which could be solved
in one step of Newton’s method. In this case, ∇3f(x) = 0, so the second order information
is unchanging with x.

If self-concordance holds, Theorem 2 gives a very strong local convergence guarantee.
If we start with λf < 1 (e.g. λf = 1/4) we’re basically squaring our error every time. This
leads to very fast convergence. In O(log log(1/ε)) steps we go from O(1) error to ε error.
This is called quadratic convergence.

5 Interior Point Updates

To analyze our interior point method, we should like to apply Theorem 2. Doing so requires
arguing that x?wi

gives a good initialization point for minimzing Fwi+1 . In particular, since
we update w by multiplying it by 1 + q for some q ≥ 0, we want to find the largest q such
that:

λF(1+q)w
(x?w) ≤ 1

4
.

The particular choice of 1/4 here is arbitrary – for Theorem 2 to ensure rapid convergence,
we just need that λF(1+q)w

(x?w) ≤ 1/2− c for some constant c. First we note that

∇Fqw(x?w) = ∇Fw(x?w) + ((1 + q)w − w)c = 0 + qw · c.

Additionally,

∇2Fqw(x?w) = ∇2B(x?w)

Finally, we have: 0 = ∇Fw(x?w) = wc+∇B(x?w), so it must be that;

c = −∇B(x?w)/w

So for z = x?w, we get

λ2Fqw
=

(qw)2∇B(z)T [∇2B(z)]−1∇B(z)

w2

= q2∇B(z)T [∇2B(z)]−1∇B(z)

8

So our goal becomes to lower bound ∇B(z)T [∇2B(z)]−1∇B(z) ≤ ν. The smaller ν,
the larger we can set q, and thus the more progress we make on each step. ν is called the
“concordance parameter” of our barrier function, B. B is called a ν-self concordant barrier.

Showing that ∇B(z)T [∇2B(z)]−1∇B(z) ≤ ν is equivalent to showing that:

∇B(z)T [∇2B(z)]−1∇B(z) ≤ ν · ∇B(z)T [∇B(z)∇B(z)T]−1∇B(z).

To do so, we will show how to bound:

xT [∇2B(z)]−1x ≤ O(n) · x[∇B(z)∇B(z)T]−1x (1)

for all x, which means that ν ≤ m.
Before proving (1), let’s consider what it would give. It would allow us to set q =

O(1/
√
n). As discussed previously, this would lead to a total of O(

√
nL log(n/ε)) outer

iterations for the interior point method.
Within each iteration, the dominant runtime cost is the minimization of Fw with New-

ton’s method. We don’t cover the details here, but it turns out that it is sufficient to solve
this problem to a small positive constant, which takes just a constant number of steps.
Each step of Newton’s method requires building and inverting the Hessian matrix. Assum-
ing for simplicity that d = n, this takes O(n3) time. This gives a total running time of
roughly O(n3.5L). Compare this to ellipsoid, which took O(n2L) iterations total, where
each iteration was cheaper at O(n2) time, so the total complexity is roughly O(n4L).

6 Orderings for PSD matrices

Before proving (1), we introduce some useful notation related to positive semidefinite (PSD)
matrices. Recall that a symmetric matrix A is PSD if xTAx ≥ 0 for all x. The “Loewner
ordering”, which uses symbols � and � is defined as follows:

B � A if A−B is positive semidefinite.

The Loewner ordering is a partial ordering, meaning that, while it’s not possible for both
B � A and B � A to hold, it is possible that neither hold. Even so, the ordering has many
useful properties. For example, it’s possible to show that:

B � A ⇐⇒ B−1 � A−1.

Proving 1 is equivalent to proving that [∇2B(z)]−1 � O(n) · [∇B(z)∇B(z)T]−1. To do
so, it suffices to show that:

O(n) · ∇2B(z)] � ∇B(z)∇B(z)T .

To prove this bound, we have:

xT∇B(z)∇B(z)Tx ≤
n∑

i=1

n∑
j=1

(
1

aTi z − bi
xTai

)(
1

aTj z − bj
xTaj

)

≤ n
n∑

i=1

(
1

aTi z − bi
xTai

)2

= n · xT∇2B(z)x.

9

The inequality follows from the bound ab ≤ a2+b2

2 for all a, b.

7 Other considerations

We necessarily skipped over a lot of details in covering interior point methods. Again, please
see [4] for more detailed coverage.

References

[1] Khachiyan, Leonid G. A polynomial algorithm in linear programming. Doklady
Academii Nauk SSSR. Vol. 244. 1979.

[2] Karmarkar, Narendra. A new polynomial-time algorithm for linear programming. Pro-
ceedings of the sixteenth annual ACM symposium on Theory of computing. ACM, 1984.

[3] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. Journal of the ACM, 2004.

[4] Nisheeth K. Vishnoi. Algorithms for Convex Optimization. EPFL lecture notes, 2018.
https://nisheethvishnoi.wordpress.com/convex-optimization/.

https://nisheethvishnoi.wordpress.com/convex-optimization/

	Convex Optimization
	Linear programming

	High Level Strategy
	Aside: how to start inside the polytope

	The Barrier Function
	Newton's Method
	The Hessian
	Iteration
	Convergence

	Interior Point Updates
	Orderings for PSD matrices
	Other considerations

