
princeton univ. F’18 cos 521: Advanced Algorithm Design

Lecture 14: The Power Method and Spectral Methods for
Graph Partitioning

Lecturer: Christopher Musco

1 The Singular Value Decomposition

Last lecture we proved that any matrix has a singular value decomposition:

Theorem 1 (Singular Value Decomposition (SVD)). Consider A ∈ Rn×d and let r =
min(d, n). A can always be written as the product of three matrices, A = UΣV T , where:

• U ∈ Rn×r is a matrix with orthonormal columns,

• Σ =

σ1 . . .

σr

 is a non-negative diagonal matrix with entries σ1 ≥ . . . ≥ σr ≥ 0,

• V ∈ Rd×r is a matrix with orthonormal columns.

U ’s columns are called the “left singular vectors” of A, V ’s columns are its “right singular
vectors”, and σ1, . . . , σr are its “singular values”.

We also proved the following very useful theorem:

Claim 2 (Truncated SVD). For any k ∈ 1, . . . ,min(n, d), let Uk ∈ Rn×k contain the first k
columns of U , let Vk ∈ Rd×k contain the first k columns of V , and let Σk be a k×k diagonal
matrix containing A’s first singular values. Then:

‖A− UkΣkV
T
k ‖2F = min

B∈Rd×k,C∈Rk×n
‖A−BC‖2F .

In other words, there is no better rank k approximation for A than UkΣkV
T
k .

Note that UkΣkV
T
k = AVkV

T
k . VkV

T
k is a projection matrix, so this is a projection

of A’s rows onto the span of Vk. For any orthonormal matrix Z ∈ Rd×k, by the matrix
Pythagorean theorem, ‖A − AZZT ‖2F = ‖A‖2F − ‖AZZT ‖2F . So Z = Vk can also be said
to maximize ‖AZZT ‖2F among all Z. Similarly, ‖UkUTk A‖2F ≥ ‖QQTA‖2F for any matrix
Q ∈ Rn×k with orthonormal columns.

The SVD gives optimal low-rank approximations for other norms. One useful example
is the spectral norm, ‖M‖2 = maxx, ‖x‖2=1 ‖Mx‖2. Try proving the following:

‖A− UkΣkV
T
k ‖22 = σ2k+1 = min

B∈Rd×k,B∈Rk×n
‖A−BC‖22.

1

2

2 Connection to Other Matrix Decompositions

The singular value decomposition is closely related to other matrix decompositions:

Eigendecomposition The left singular vectors of A are eigenvalues of AAT = UΣ2UT and
the right singular vectors are eigenvectors of ATA. To see that this is the case, note that:

AATui = UΣV TV UTui = UΣei = σiui.

Here ei is the ith standard basis vector: UTui = ei because ui is orthogonal to all other
columns in U .

The connection with eigendecomposition means that any algorithm for eigendecompo-
sition can be used to compute an SVD. Suppose d ≤ n. Then we can compute ATA,
from which we can compute V using an eigendecomposition algorithm. We then have
ΣUT = AV T , so we can obtain Σ and U by normalizing the columns of this matrix and
setting σi to be the normalization factor for column i. This procedure takes O(nd2) time to
compute ATA and roughly O(d3) time to compute the eigendecomposition of this matrix1

On another note, you may recall that any real symmetric matrix M has eigendecompo-
sition UΛUT where U is orthonormal. Λ can have negative diagonal elements, so at least
up to changing signs, M ’s singular vectors are the same as its eigenvectors. It’s singular
values are the absolute values of its eigenvalues.

Principal Component Analysis (PCA) PCA is almost the same as the SVD, however,
before computing singular vectors, we mean center A’s rows: ai → ai − 1

n

∑n
j=1 aj . The

right singular vectors of the resulting matrix are call the “principal components” of A.

3 The Power Method

For an n × d matrix with n ≤ d, we cannot hope to do much better than O(nd2) time
for computing an SVD. In theory, we can speed up the computation of ATA and the
eigendecomposition of this n×n matrix with fact matrix multiplication. Doing so achieves
a runtime of O(ndω−1), where ω is the current best known exponent for d × d matrix
multiplication (ω = 2.3728639... as of 2014 [1]). In practice, however, runtime still scales as
O(nd2).

We want something faster. We are especially interested in algorithms that run more
quickly when we only want to compute a few of A’s top singular vectors, not all n of them
(as is often the case in applications). One such algorithm is the well known power method.
We present a version below for approximately computing the top right singular vector of
A, which can be used to find a best rank 1 approximation:

Power Method

• Initialize z0 ∈ Rd to have every entry a random Gaussian variable. Set z0 = z0/‖z0‖2.
1We say roughly “roughly” because technically there is no “exact” algorithm for the SVD, even in the Real

RAM model of computation. This is consequence of the Abel-Ruffini theorem. Thus, all SVD algorithms
are technically approximation algorithms. However, standard methods obtain very good ε dependence. E.g.
the QR algorithm can compute a factorization V Σ2V T with ‖V Σ2V T −ATA‖ ≤ ε in O(d3 +d2 log log(1/ε))
time. The second term is ignored because it is always lower order in practice.

3

• Repeat: zt+1 ← AT (Azt). zt+1 ← zt+1/‖zt+1‖2.

Theorem 3. Let γ = σ1−σ2
σ1

be a parameter that measures the “gap” between A’s first and

second singular values. After t = O
(
log(d/ε)

γ

)
iterations, ‖v1 − zt‖22 ≤ ε. I.e. zt is a very

good approximate top right singular vector. The power method runs in O(t · nd) time.

Proof. Write z0 =
∑d

i=1 αivi where vi is the ith right singular vector of A. Each αi represents
“how much” of singular vector vi is in z0. Let α ∈ Rd be the vector containing these values.
α = V T g/‖g‖2 where g is a vector of independent Gaussians. By rotational invariance of
the Gaussian distribution, V T g is also a random Gaussian vector. So at least to start, z0
contains a random amount of every right singular vector in A.

It’s not hard to check that α1 > 1/poly(d) with high probability and, since z0 has unit
norm, maxi αi = 1. So we at least have a non-negligible component of v1 in z0.

The idea behind the power method is to boost this component so that, eventually, zt
is made up almost entirely of v1. This is accomplished by repeatedly multiplying by ATA.
After t steps, zt = c

(
ATA

)t
z0 for some scale factor c. Since ATA = V Σ2V T , after iteration

t we have:

zt =
d∑
i=1

wivi

where each wi ∼ σ2ti αi. By our “gap” assumption, σ1
σj
≥ 1 + γ for all j ≥ 2. Accordingly,

after t steps, for all j ≥ 2,

wj
w1
≤ (1 + γ)2t · αi

α1
≤ (1 + γ)2t · poly(d).

If we set t = O
(
log(d/ε)

γ

)
then we have

wj

w1
≤
√
ε/d, which means that wj ≤

√
ε/2d. Since

‖z‖t =
∑d

j=1w
2
j = 1, it follows that w1 ≥ 1− ε/2 and thus zTt v1 ≥ (1− ε/2). So:

‖v1 − zt‖22 = ‖v1‖22 + ‖z1‖22 − 2zTt v1 ≤ ε.

So when γ is considered constant, power method converges in log(d/ε) iterations. Ac-
cordingly, we can compute a good approximation to the top right singular vector in time
O(nd log(d/ε)).

How about when γ is very small? In the most extreme case, when γ = 0, power method
will never converge on v1 and in fact the dependence on 1/γ is unavoidable. However, if γ
is small, we don’t typically care about finding v1! Since σ1 = σ2, v2 is just as “good” of an
eigenvector as v1. It’s a good exercise to prove the following:

Theorem 4. After t = O
(
log(d/ε)

ε

)
iterations of power method, zt satisfies:

• ‖Azt‖2 ≥ (1− ε)σ1

• ‖A−AztzTt ‖F ≤ (1 + ε)‖A−Av1vT1 ‖F

4

• ‖A−AztzTt ‖2 ≤ (1 + ε)‖A−Av1vT1 ‖2

In other words, after O
(
log(d/ε)

ε

)
, by most common measures, projecting rows to zt still

gives a nearly optimal low-rank approximation for A. We’ve traded a 1/γ dependence for
a 1/ε dependence and a different, but arguably more natural approximation guarantee.

4 Beyond Power Method

Last class we discussed how low-rank approximations can be computed in a “greedy” way –
i.e. we find a rank 1 approximation to A, substract it off, then find a rank 1 approximation
to the remainder, continuing for k steps. We sum up all of these rank-1 approximations to
find a rank k approximation. This process is called “deflation” and it’s possible to show
that it works even when our rank-1 approximations are computed approximately (e.g. with
power method).

Other ways of obtaining rank k approximations include “blocked” versions of the power
method, where we derive k singular vectors from

(
ATA

)t
Z where Z ∈ Rd×k is a random

Gaussian matrix (instead of just a vector).
In either case, these iterative methods take O(t ·ndk) time to compute a nearly optimal

rank-k approximation, where either t = O(log dε) or depends on gaps between A’s singular
vectors. In practice, this is typically much faster than computing a full SVD. As an added
advantage, all of this runtime complexity comes from matrix-vector multiplications of the
form ATAx, which can be speed up beyond O(nd) time when A is sparse or when parallel
processing is available.

Finally, I’ll mention that it is actually possible to improve the iteration complexity of
the power method to t = O(log d√

ε
) using what is known as the Lanczos method. Variations

on the Lanczos method are used almost everywhere in practice (e.g. if you run svds in
MATLAB, Python, etc.). If you are interested, Chapter 10 in [2] gives a relatively simple
analysis for the rank-1 case.

5 Matrix decomposition and graphs

In general, algorithms based on singular value decomposition or eigendecomposition are re-
ferred to as “spectral methods” – the singular values σ1, . . . , σr of a matrix or the eigenvalues
λ1, . . . , λr are referred to as the “spectrum” of the matrix.

Beyond statistics, data analysis, and machine learning, spectral methods have been
very important in developing faster algorithms for graphs, including for classic problems
like minimum cut and max flow. Today we will see one particularly nice application.

A big reason for the connection between graphs and matrix decompositions is that the
eigenvectors/singular vectors of certain matrix representations of a graph G contain a lot
of information about cuts in the graph.

Let G = (V,E) be an undirected graph on n nodes. Recall that G’s adjacency matrix

5

A is defined by:

Au,v =

{
1 if (u, v) ∈ E
0 if (u, v) /∈ E

A is a symmetric matrix, so it has an eigendecomposition UΛUT where U is orthonormal.
For a given eigenvector ui and corresponding eigenvalue λi, u

T
i Aui = λi.

Consider a vector z ∈ {−1, 1}n. It’s not hard to check that zTAz equals:

zTAz =
∑
u,v∈V

1[(u, v) ∈ E]zuzv.

Think of z as an indicator vector for a cut between two partitions of vertices, S and T . I.e.
zu = 1 for u ∈ S and zu = −1 for u ∈ T . Every edge within S or T adds a value of 1 to
zTAz, which every edge between the partitions adds −1. So, in general, zTAz will be larger
when z is an indicator for “good” partition of G that clusters the graph into two groups of
well connected vertices.

In particular, this means that z correlates well with the top eigenvectors of A, which
means that these eigenvectors are often useful in finding such cuts.

6 Planted Bisection/Stochastic Block Model/Community De-
tection

Unfortunately, most optimization problems involving balanced/sparse cuts are NP-hard, but
there are many natural “average case” problems to study, which can justify why spectral
methods work well in practice. Consider the follow:

Definition 1 (Stochastic Block Model). Let G(V,E) be a random graph with vertices V =
1, . . . , n. Let S, T form a bisection of V . I.e. S, T ⊂ V with S ∪ T = V , S ∩ T = ∅ and
|S| = |T | = n/2. For probabilities p > q, construct G by adding edge (i, j) independently
with probability Yij, where:

Yij =

{
p if both i, j ∈ T or i, j ∈ S
q if i ∈ T, j ∈ S or i ∈ S, j ∈ T.

We can think of S and T as disjoint “communities” in our graph. Nodes are connected
randomly, but it is more likely that they are connected to members of their community than
members outside their community.

Our goal is to design a spectral method to recover these underlying communities. Today
we are just going to a give a sketch of an algorithm/proof.

Let’s introduce another matrix B ∈ Rn×n defined as follows:

Bij =

{
p if i, j ∈ T or i, j ∈ S
q if i ∈ T, j ∈ S or i ∈ S, j ∈ T.

6

It is not hard to see that B = E[A] + pI, where I is an n× n identity. Accordingly, at
least in expectation, A has the eigenvectors as B. What are these eigenvectors?

B is rank two, so it only has two, u1 and u2, where:

u1(i) =
1√
n

1 ∀i,

u2(i) =

{
1√
n

1 ∀i ∈ S
1√
n
− 1 ∀i ∈ T.

Bu1 = n
2 (p + q)u1 and Bu2 = n

2 (p − q)u2. In this case, u1 and u2 are also B’s singular
vectors.

So, if we could compute B’s eigenvectors, we could immediately recover our community
by simply examining u2. Of course, we don’t have access to B, but we do have accesses to
a perturbed version of the matrix via:

Â = A+ pI.

Consider R = B − Â. Classic perturbation theory results in linear algebra tell us that if
‖R‖2 is small, then Â’s eigenvalues and eigenvectors will be close to those of B.

Let B have eigenvectors u1, . . . , un and eigenvalues λ1, . . . , λn. Let Â have eigenvectors
û1, . . . ûn and eigenvalues λ̂1, . . . , λ̂n. Using ideas from the past few lecture you could already
prove the following result, which is a good exercise:

Claim 5. If B and Â are real symmetric matrices with ‖B − Â‖2 ≤ ε, ∀i,

|λi − λ̂i| ≤ ε.

In words, if Â and B are close in spectral norm, their eigenvalues are close. For our
application, we further need that the matrices eigenvectors are close. Below is a classic
result quantifying this – you can find a simple proof of a slightly weaker version in [3].

Claim 6 (Davis-Kahan, 1970 [4]). Suppose B and Â are real symmetric matrices with
‖B − Â‖2 ≤ ε. Let θi denote the angle between ui and ûi. For all i,

sin θi ≤
ε

minj 6=i |λi − λj |
.

Let’s unpack this claim. It says that if B and Â are close in spectral norm, then
their corresponding eigenvectors are close. However, the distance is effected by a factor of
1/|λi − λj |. This makes sense – suppose λi < λi+1 + ε. Then a pertubation with spectral
norm ε could cause the ui and ui+1 to “swap” order – specifically just add εui+1u

T
i+1 to B

to cause such a change. In the perturbed matrix, ûi = ui+1, which is orthogonal to ui.
Fortunately, in our case, we have a gap between B’s eigenvalues – in particular, |λ2 −

λ1| ≥ nq and |λ2 − 0| = n
2 (p − q). Let’s assume a challenging regime where q is close to p

and thus n
2 (p− q) ≤ nq).

A simple corollary of Claim 6 is that ‖ui − ûi‖2 ≤
√
2ε

minj 6=i |λi−λj | .

7

As an estimate for our community indicator vector u2, let’s consider sign(û2). Suppose
this estimate differs from u2 on k entries. Then it must be that:

‖û2 − µ2‖2 ≥
√
k

n

So, by the eigenvector perturbation argument, we can bound

k ≤ O
(

ε2

n(p− q)2

)

7 Eigenvalues of Random matrices

So we are left to bound ‖R‖2. R = B − Â is a random matrix with half of its entries equal
to p with probability (1 − p) and (p − 1) with probability p, and the other half equal to q
with probability (1− q) and (q − 1) with probability q.

It is possible to prove:

Theorem 7 (From [5]). If p ≥ O(log4 n/n), then with high probability,

‖R‖2 ≤ O(
√
pn)

You will prove a very related (but slightly looser statement on the problem set).
With this bound in place, we immediately have that our spectral algorithm recovers the

hidden partition with a number of mistakes bounded by:

k = O

(
p

(p− q)2

)
.

This is very good. Even when q = p − O(1/
√
n) (e.g. our probabilities are very close, so

the communities should be hard to distinguish) we only make O(n) mistakes – i.e. we can
guess a large constant fraction of the community identities correctly.

References

[1] Le Gall, François. Powers of Tensors and Fast Matrix Multiplication. Proceedings of the
39th International Symposium on Symbolic and Algebraic Computation, 296–303. 2014.

[2] Sushant Sachdeva, Nisheeth K. Vishnoi. Faster Algorithms via Approximation The-
ory. Foundations and Trends in Theoretical Computer Science. 2013. https://theory.
epfl.ch/vishnoi/Publications_files/approx-survey.pdf.

[3] Daniel Spielman. Spectral Partitioning in a Stochastic Block Model. Lecture, Yale Uni-
versity. 2015. http://www.cs.yale.edu/homes/spielman/561/lect21-15.pdf.

[4] Chandler Davis, William Morton Kahan. The rotation of eigenvectors by a perturbation.
SIAM Journal on Numerical Analysis, 7(1):146, 1970.

[5] Van Vu. Spectral norm of random matrices. Combinatorica, 27(6):721736, 2007.

https://theory.epfl.ch/vishnoi/Publications_files/approx-survey.pdf
https://theory.epfl.ch/vishnoi/Publications_files/approx-survey.pdf
http://www.cs.yale.edu/homes/spielman/561/lect21-15.pdf

	The Singular Value Decomposition
	Connection to Other Matrix Decompositions
	The Power Method
	Beyond Power Method
	Matrix decomposition and graphs
	Planted Bisection/Stochastic Block Model/Community Detection
	Eigenvalues of Random matrices

