
princeton univ. F’18 cos 521: Advanced Algorithm Design

Lecture 11: Approximate regression, ε-nets, and faster JL
embeddings

Lecturer: Christopher Musco

1 Preliminaries

Last lecture we introduced the Johnson-Lindenstrauss lemma, a foundational result in di-
mensionality reduction. We considered a distribution Dm×d over m×d matrices which could
be sampled as follows: generate a random matrix G with each entry gij an i.i.d. standard
normal variable (i.e. gij ∼ N (0, 1)) and then scale G by 1/

√
m. We proved that

Theorem 1. If Π is chosen from Dm×d and m = O(log(1/δ)/ε2), then for any vector x,

(1− ε)‖x‖22 ≤ ‖Πx‖22 ≤ (1 + ε)‖x‖22 (1)

with probability 1− δ.

One common way of applying this lemma in practice is to choose δ small enough so that
(1) holds simultaneously for many vectors x by a union bound. For example, we showed
that, if we have n points v1, . . . , vn ∈ Rd, then as long as we choose δ = δ′/

(
n
2

)
,

(1− ε)‖vi − vj‖22 ≤ ‖Πvi −Πvj‖22 ≤ (1 + ε)‖vi − vj‖22

for all pairs vi, vj with probability 1 − δ′. This is the original form of the Johnson-
Lindenstrauss lemma, and is useful in proving that Πv1, . . . ,Πvn can be used in any down-
stream task that depends on the Euclidean distance between data points (e.g. distance
based clustering, near neighbor search, etc.).

2 Beyond the Union Bound

At the end of last lecture, we sought to apply Johnson-Lindenstrauss dimensionality re-
duction to approximately solving a least square regression problem. Specifically, for some
A ∈ Rd×s and some y ∈ Rd, we want to approximately solve:

min
x∈Rs

‖Ax− y‖22 (2)

by instead solving the “sketched” problem

min
x∈Rs

‖ΠAx−Πy‖22. (3)

As long as Π is chosen so that m ≤ d, then ΠA contains fewer data points than A and (3)
can be solved much faster than (2): in O(ms2) vs. O(ds2) time.

1

2

Let x̃∗ be the optimal solution for (3). We want to argue that

‖Ax̃∗ − y‖22 ≤ (1 + ε) min
x∈Rs

‖Ax− y‖22,

and saw that, to do so, it suffices to prove:

∀x ∈ Rs (1− ε)‖Ax− y‖22 ≤ ‖Π(Ax− y)‖22 ≤ (1 + ε)‖Ax− y‖22. (4)

Proving this statement requires establishing a Johnson-Lindenstrauss type bound for an
infinity of possible vectors Ax − y, which obviously can’t be tackled with a union bound
argument. Today we will see how to prove this result using a different approach.

3 Subspace Embeddings

We will prove a more general statement that implies (4) and is useful in other applications.

Theorem 2. Let U ⊂ Rd be an s-dimensional linear subspace in Rd. If Π ∈ Rm×d is chosen
from any distribution D satisfying Theorem 1, then with probability 1− δ,

(1− ε)‖v‖2 ≤ ‖Πv‖2 ≤ (1 + ε)‖v‖2 (5)

for all v ∈ U , as long as m = O
(
s log(1/ε)+log(1/δ)

ε2

)
1.

Figure 1: Theorem 2 extends Theorem 1 to all points in a linear subspace U .

How does Theorem 2 imply (4)? We can apply it to the s + 1 dimensional subspace
spanned by A’s s columns and y. Every vector Ax−y lies in this subspace. So, for regression,

we will require dimension m = O
(
(s+1) log(1/ε)

ε2

)
.

We start with the observation that Theorem 2 holds as long as (5) holds for all points
on the unit sphere in U . This is a consequence of linearity. We denote the sphere SU :

SU = {v | v ∈ U and ‖v‖2 = 1}.

Any point v ∈ U can be written as cx for some scalar c and some point x ∈ SU . If
(1 − ε)‖x‖2 ≤ ‖Πx‖2 ≤ (1 + ε)‖x‖2 then c(1 − ε)‖x‖2 ≤ c‖Πx‖2 ≤ c(1 + ε)‖x‖2 and thus
(1− ε)‖cx‖2 ≤ ‖Πcx‖2 ≤ (1 + ε)‖cx‖2.

1It’s possible to obtain a slightly tighter bound of O
(
s+log(1/δ)

ε2

)
. It’s a nice challenge to try proving

this. Hint: use a constant factor net NO(1) instead of an ε net Nε as we do below.

3

4 An argument via ε-nets

We will prove Theorem 2 by showing that there exists a large but finite set of points Nε ⊂ SU
such that, if (5) holds for all v ∈ Nε, then it must hold for all v ∈ SU , and by the argument
above, for all v ∈ U . Nε is called an “ε-net”.

Lemma 3. For any ε ≤ 1, there exists a set Nε ⊂ SU with |Nε| =
(
4
ε

)d
such that ∀v ∈ SU ,

min
x∈Nε

‖v − x‖ ≤ ε.

Figure 2: An ε-net Nε for a sphere in a 2 dimensional subspace U .

Construction of the ε-net.

Proof. Consider the following greedy procedure for constructing Nε (which we don’t actually
need to implement – it’s just for the proof argument):

• Set Nε = {}

• While such a point exists, choose an arbitrary point v ∈ SU where @x ∈ Nε with
‖v − x‖ ≤ ε. Set Nε = Nε ∪ {v}.

After running this procedure, we have Nε = {x1, . . . , x|Nε|} points that satisfy the condition
minx∈Nε ‖v − x‖ ≤ ε for all v ∈ SU . So we just need to bound |Nε|.

To do so, we note that, for all i, j, ‖xi − xj‖ ≥ ε. If not, then either xi or xj would not
have been added to Nε by our greedy procedure. Accordingly, if we place balls of radius
ε/2 around each xi:

B(x1, ε/2), . . . , B(x|Nε|, ε/2)

then for all i, j, B(xi, ε/2) does not intersect B(xj , ε/2).
The volume of a d dimensional ball of radius r is crd for some value c that does not

depend on r. So the total volume of B(x1, ε/2) ∪ . . . ∪ B(x|Nε|, ε/2) is |Nε| · c
(
ε
2

)d
. At the

same time, B(x1, ε/2), . . . , B(x|Nε|, ε/2) are contained inside a ball of radius 1 + ε/2, which

has volume < c2d. So we have:

|Nε| · c
(ε

2

)d
< 2d which implies |Nε| ≤

(
4

ε

)d
.

4

Extension to all vectors.

We are now ready to prove Theorem 2.

Proof. Choose m = O
(
log(|Nε|/δ)

ε2

)
= O

(
d log(1/ε)+log(1/δ)

ε2

)
so that (5) holds for all x ∈ Nε.

Now consider any v ∈ SU . It’s not hard to see that, for some x0, x1, x2 . . . ∈ Nε, v can
be written:

v = x0 + c1x1 + c2x2 + . . .

for constants c1, c2, . . . where |ci| ≤ εi. Applying triangle inequality, we have

‖Πv‖2 = ‖Πx0 + c1Πx1 + c2Πx2‖2
≤ ‖Πx0‖+ ε‖Πx1‖+ ε2‖Πx2‖2 + . . .

≤ (1 + ε) + ε(1 + ε) + ε2(1 + ε) + . . .

≤ 1 +O(ε).

Similarly,

‖Πv‖2 = ‖Πx0 + c1Πx1 + c2Πx2‖2
≥ ‖Πx0‖ − ε‖Πx1‖ − ε2‖Πx2‖2 − . . .
≤ (1− ε)− ε(1 + ε)− ε2(1 + ε)− . . .
≤ 1−O(ε).

So we have proven

1−O(ε) ≤ ‖Πv‖2 ≤ 1 +O(ε)

for all v in SU . As discussed early, this is sufficient to prove the theorem.

5 Faster Johnson-Lindenstrauss dimensionality reduction

Theorem 2 shows that, if we solve our regression problem using ΠA and Πy in place of A
and y, we can reduce our running time from O(ds2) to approximately O(s3), at least if we
are willing to settle for an approximate solution.

But that’s not counting the cost to compute ΠA and Πy. Naively, that cost is O(ds2)!
I.e., the cost to multiple A ∈ Rd×s by our sketching matrix Π ∈ Rs×d. If we want to actually
speed up least squares regression, we need to do better than that.

The following remarkable result of Ailon and Chazelle [1] shows how to do much better:

Theorem 4. For all m, d, there exists a set of m × d matrices F such that, for all x and

all Π ∈ F , Πx can be computed in O(d log d) time. Moreover, if m = O
(
log(d/δ)2 log(1/δ)

ε2

)
and Π is drawn uniformly at random from F , then for any x,

(1− ε)‖x‖22 ≤ ‖Πx‖22 ≤ (1 + ε)‖x‖22 (6)

with probability 1− δ.

5

What’s the consequence for regression? Using the same ε-net argument that we used for
random Gaussian matrices, we will need to sketch to dimension m = O(s log2 d/ε2) to get
an approximate solution with error ε. We can compute ΠA and Πy in O(md log d) time.
We can thus obtain an approximate solution in total time O(sd log3 d+ s3 log2 d) time.

This is a pretty remarkable runtime – the first term is only a polylog factor larger than
how long it takes to simply read all of the entries in A!

Construction

We will describe a distribution over matrices that achieves Theorem 4 by describing an
algorithm for selecting a matrix from the distribution randomly. Ailon and Chazelle’s
construction relies on what’s known as the “Fast Hadamard Transform”, Hk, which is a
square matrix of size d = 2k for some integer k.

H1 = 1 H2 =
1√
2

[
1 1
1 −1

]
H3 =

1√
4

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 . . . Hk =
1√
2

[
Hk−1 Hk−1
Hk−1 −Hk−1

]

Assuming for now that d is a power of 2 (if it’s not, you can pad with zeros until it is)
our construction for Π ∈ Rm×d is:

• Chose a d × d diagonal matrix D by selecting each diagonal entry independently to
be ±1, each with probability 1/2.

• Chose a random m × d sampling matrix S, which contains a single entry of
√

d
m in

each row in position i, where i is chosen uniformly at random from 1, . . . , d.

• Set Π = SHD.

SHD is called a “subsampled randomized Hadamard transform”. To understand the
performance of SHD, notice that every Hk has two important properties:

1. Hkx can be be computed in O(d log d) time (using a divide-and-conquer algorithm).

2. Hk is orthonormal: i.e. HT
k Hk = I and thus ‖Hkx‖2 = ‖x‖2 for all x.

Using property 1, we see that it’s possible to compute Πx = SHDx in O(d log d) time. We
will use property 2 shortly.

Intuition

Π can be applied quickly to vectors, but why should we expect it to preserve norms with
high probability?

Consider what would happen if we instead tried to approximate ‖x‖2 by ‖Sx‖2 – i.e. we
sketch x by simply sub-sampling its coordinates. E‖Sx‖2 = ‖x‖2, so the estimate is correct
in expectation, but it does not concentrate well for all x. If x is very sparse (imagine it is

6

only non-zero in one location) then with good probability we will simply get an estimate of
‖Sx‖2 = 0.

Ailon and Chazelle’s main observation was that H can avoid this bad case by “spreading
out” sparse vectors, without changing their norm (since it’s orthonormal). In the most
extreme case, if x only has a single non-zero entry, all entries in Hx will have the same
absolute value, ‖SHx‖2 exactly equals ‖x‖2.

This effect holds more generally. In fact, the original paper was inspired by the uncer-
tainty principal in physics. There are many different ways to state the uncertainty principal,
but one is that “no function can be locally concentrated in both the time and frequency
domain”. H is a discrete version of the Fourier transform, so multiplying x by H coverts it
to a sort of “frequency domain”. If x is locally concentrated (i.e., sparse or approximately
sparse) than Hx won’t be.

Why introduce the random diagonal matrix D? If we simply used Hx then Π wouldn’t
be randomized. It would be trivial to cook up some x so that, e.g. Hx = [1; 0; 0; . . . , 0], in
which case ‖SHx‖2 would fail to estimate ‖x‖2 with high probability. The diagonal matrix
prevents such a case for observing – D randomly flips every entry of x, making it extremely
unlikely that such bad cases occur.

The final effect is that SHD serves as a very effective “pseudorandom” sign matrix,
even though it can be multiplied by a vector in O(d log d) time and only takes O(d) random
bits to specify.

(a) Deterministic Hadamard
matrix.

(b) d × d randomized
Hadamard matrix SHD.

(c) d×d fully random sign ma-
trix.

Figure 3: Visualization of the sign patters of different matrices. Entries of +1 are marked
with blue, entries of −1 are marked with white. Despite its highly structure construction,
simply multiplying a Hadamard matrix by a random diagonal and randomly permuting its
rows creates a matrix that looks (and behaves) very close to fully random.

Analysis

Making the intuition above formal is surprisingly simple. We first prove:

Lemma 5. If Π = SHD is chosen as described and m = log(d/δ) then, for all i ∈ 1, . . . d,

|[HDx]i| ≤
√

log(d/δ)√
d

‖x‖2

with probability 1− δ.

7

Proof. To prove this lemma, consider any particular row of HDx – i.e. any particular i.
We will prove the bound for each row and then obtain the result via a union bound. For
any one row, [HDx]i is simply equivalent to multiplying x by a vector with i.i.d. random
sign vector (and then scaling by 1/

√
d). This allows to apply:

Lemma 6 (Corollary of Hoeffding Bound2). If σ1, . . . , σd are each selected independently
and uniformly from {−1,+1} than:

Pr

[∣∣∣∣∣
d∑
i=1

σixi

∣∣∣∣∣ ≥ t
]
≤ 2e

− t2

2‖x‖22 .

Alternatively, a similar tail bound can be proven using a moment method and the
Khintchine inequality :3 (

E

[
d∑
i=1

σixi

]p)1/p

≤ O(
√
p‖x‖2).

So if we choose t = O
(√

log(d/δ)‖x‖2
)

then |[HDx]i| ≤
√

log(d/δ)√
d
‖x‖2 with probability

1− δ/d. Lemma 5 then holds by a union bound.

With Lemma 5 in place, we can condition on the event that each ([HDx]i)
2 ≤ log(d/δ)‖x‖22.

Now consider our estimator ‖SHDx‖22, which equals

‖SHDx‖22 =
d

m

m∑
k=1

[HDx]2ik . (7)

Here each ik is a random index in 1, . . . , d. Since H is orthonormal, ‖HDx‖22 = ‖x‖22 and
thus

E‖SHDx‖22 = d · E[HDx]2ik = E‖HDx‖22 = ‖x‖22.

So our estimator is correct in expectation. Additionally, considering (7) and Lemma 5,
‖SHDx‖22 is an average of m random variables, each bounded in [0, log(d/δ)·‖x‖22]. Theorem
4 then follows either from a Bernstein bound, or a Hoeffding bound. We need to choose

m = O
(
log(d/δ)2 log(1/δ)

ε2

)
.

References

[1] Nir Ailon and Bernard Chazelle. The Fast JohnsonLindenstrauss Transform and Ap-
proximate Nearest Neighbors. SIAM Journal on Computing, 39(1):302-322. 2009

2See e.g. Theorem 4 in http://cs229.stanford.edu/extra-notes/hoeffding.pdf for a Hoeffding
bound that can be used.

3For a proof of this bound see http://people.seas.harvard.edu/~minilek/cs229r/fall15/lec/lec11.
pdf.

http://cs229.stanford.edu/extra-notes/hoeffding.pdf
http://people.seas.harvard.edu/~minilek/cs229r/fall15/lec/lec11.pdf
http://people.seas.harvard.edu/~minilek/cs229r/fall15/lec/lec11.pdf

	Preliminaries
	Beyond the Union Bound
	Subspace Embeddings
	An argument via -nets
	Faster Johnson-Lindenstrauss dimensionality reduction

