
princeton university fall ’18 cos 521:Advanced Algorithms

Homework 2 (60 Points)

Out: Oct 11 Due: Oct 26

Collaboration is allowed on this problem set, but solutions must be written-up individually.
Please list collaborators for each problem separately, or write “No Collaborators” if you
worked alone. Collaboration is not allowed on bonus problems.

Please prepare your problem sets in LaTeX and compile to a PDF for your final submission.
A LaTeX template is available on the course webpage.

§1 (12 points) (Approximate LP Solving via Multiplicative Weights) This exercise de-
velops an algorithm to approximately solve Linear Programs.

Consider the problem of finding if a system of linear inequalities as below admits
a solution - i.e., whether the system is feasible. This is an example of a feasibility
linear program and while it appears restrictive, one can use it solve arbitrary linear
programs to obtain approximate solutions.

a>1 x ≥ b1
a>2 x ≥ b2

...

a>mx ≥ bm
xi ≥ 0 ∀ i ∈ [n]

n∑
i=1

xi = 1. (1)

1) Show a simple method to solve the following linear program with two non-trivial
constraints for any weights w1, w2, . . . , wm (the weights are fixed, and xis are the
variables, as above).

max

m∑
j=1

wj(a
>
j x− bj)

xi ≥ 0 ∀i ∈ [n]
n∑

i=1

xi = 1. (2)

Conclude that if there are non-negative weights w1, w2, . . . , wm such that the value of
the program above is negative, then the system (1) is infeasible.

2) The above setting of finding weights that certify infeasibility of (1) might remind
you of the setting of weighting the experts via multiplicative weights update rule

1

2

discussed in the class. Use these ideas to obtain an algorithm that a) either finds a
set of non-negative weights certifying infeasibility of LP in (1) or b) finds a solution
x that approximately satisfies all the constraints in (1), i.e., for each 1 ≤ i ≤ m,
a>j x − bj ≥ −ε, xi ≥ 0 and

∑n
i=1 xi = 1. Give a bound, as tight as possible, for the

number of update steps required in order to reach the above goal and use it to obtain
a running time bound for approximate LP solving. You may use the meta-theorem
MW from the lecture as a blackbox.

(Hint: Identify m “experts” - one for each inequality constraint in (1) and maintain
a weighting of experts (starting with the uniform weighting of all 1s, say) for times
t = 0, 1, . . . , - these are your progressively improving guesses for the weights. Solve
(2) using the weights at time t. If the value of (2) is negative, you are done, otherwise
think of the “cost” of the jth expert as a>j x

(t) − bj where x(t) is the solution to the
LP (2) at time t and update the weights.)

§2 (10 points) In `2 regression you are given datapoints x1, x2, . . . , xn ∈ <k and some
values y1, y2, . . . , yn ∈ < and wish to find the “best”linear function that fits this
dataset. A frequent choice for best fit is the one with least squared error, i.e. find
a ∈ <k that minimizes

n∑
i=1

|yi − a · xi|2.

Show how to solve this problem in polynomial time (hint: reduce to solving linear
equations; at some point you may need a certain matrix to be invertible, which you
can assume.).

§3 Recall the max-flow problem from undergraduate algorithm: for a directed graph
G(V,E) with non-negative capacities ce for every e ∈ E and two special vertices s
(source) and t (sink), a flow in G is an assignment f : E → fe such that fe ≤ ce
for every edge and for every vertex v ∈ V ,

∑
(u,v)∈E f((u, v)) =

∑
(v,u)∈E f((v, u)).

The task is to find a maximum flow f i.e., a flow f such that
∑

(s,u)∈E f((s, u)) is
maximized.

(a) (8 points) Show that the following LP is a valid formulation for computing the
maximum flow in G. There is a variable f(u, v) for all (u, v) ∈ E.

max
∑
u

f(u, t)

∀e = (u, v) ∈ E, f(u, v) ≤ ce
∀v /∈ {s, t},

∑
u

f(u, v) =
∑
w

f(v, w)

∀e ∈ E, f(e) ≥ 0 (3)

(b) (8 points) Write the dual for the LP (3). Show that this dual LP computes the
minimum fractional s-t cut in G (a cut that separates s and t in G and minimizes
the sum of the capacities ce of the edges going across it. You will know what a

3

fractional s-t cut is once you take the dual: every node isn’t entirely on the s
side or the t side, but rather partially on each) Use strong duality (Lecture 7)
to conclude the fractional max-flow min-cut theorem. That is, if the max-flow is
C, there exists a fractional s-t cut of value C, and no fractional s-t cut of value
< C.

(c) (Extra Credit) Devise a rounding scheme that takes as input a fractional min-cut
of value C and outputs a true (deterministic) min-cut of value C.

§4 (12 points) In class we designed a 3/4-approximation for MAX-2SAT using LP
rounding. The MAX-SAT problem is similar except for the fact that the clauses can
contain any number of literals. Formally, the input consists of n boolean variables
x1, x2, . . . , xn (each may be either 0 (false) or 1 (true)), m clauses C1, C2, . . . , Cm (each
of which consists of disjunction (an or) of some number variables or their negations)
and a non-negative weight wi for each clause. The objective is to find an assignment
of 1 or 0 to xis that maximize the total weight of satisfied clauses. As we saw in the
class, a clause is satisfied if one of its non-negated variable is set to 1, or one of the
negated variable is set to 0. You can assume that no literal is repeated in a clause
and at most one of xi or ¬xi appears in any clause.

(a) Generalize the LP relaxation for MAX-2SAT seen in the class to obtain a LP
relaxation of the MAX-SAT problem.

(b) Use the standard randomized rounding algorithm on the LP-relaxation you de-
signed in part (1)) to give a (1 − 1/e) approximation algorithm for MAX-SAT.
Note that clauses can be of any length.

(c) A naive algorithm for MAX-SAT problem is to set each variable to true with
probability 1/2 (without writing any LP). It is easy to see that this unbiased
randomized algorithm of MAX-SAT achieves 1/2- approximation in expectation.
Show the algorithm that returns the best of two solutions given by the ran-
domized rounding of the LP and the simple unbiased randomized algorithm is a
3/4-approximation algorithm of MAX-SAT.

(d) (Extra Credit) Can you give a different randomized rounding of the LP in part
(1) above that achieves 3/4-approximation without using the unbiased rounding?

§5 (10 points) (Firehouse location) Suppose we model a city as an m-point finite metric
space with d(x, y) denoting the distance between points x, y. These

(
m
2

)
distances

(which satisfy triangle inequality) are given as part of the input. The city has n
houses located at points v1, v2, . . . , vn in this metric space. The city wishes to build
k firehouses and asks you to help find the best locations c1, c2, . . . , ck for them, which
can be located at any of the m points in the city. The happiness of a town resident
with the final locations depends upon his distance from the closest firehouse. So you
decide to minimize the cost function

∑n
i=1 d(vi, ui) where ui ∈ {c1, c2, . . . , ck} is the

firehouse closest to vi. Describe an LP-based algorithm that runs in poly(m) time and
solves this problem approximately. If OPT is the optimum cost of a solution with k
firehouses, your solution is allowed to use O(k logm) firehouses and have cost at most
(1 + ε)OPT.

4

§6 (extra credit) Design an algorithm that uses k firehouses but has cost O(OPT). (Needs
a complicated dependent rounding; you can also try other ideas.) Partial credit avail-
able for partial progress.

