
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 11/15/18 6:26 AM

4.4 SHORTEST PATHS

‣ APIs

‣ properties

‣ Bellman–Ford algorithm

‣ Dijkstra’s algorithm

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Given an edge-weighted digraph, find the shortest path from s to t.

 2

Shortest paths in an edge-weighted digraph

4

5

1 3

6

7

0

2

4

5

1 3

6

7

0

2

An edge-weighted digraph and a shortest path

4->5 0.35
5->4 0.35
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

0->2 0.26
2->7 0.34
7->3 0.39
3->6 0.52

edge-weighted digraph

shortest path from 0 to 6

length of path = 1.51
(0.26 + 0.34 + 0.39 + 0.52)

shortest path from 0 to 6
0 → 2 → 7 → 3 → 6

edge-weighted digraph

Google maps

 3

see Assignment 7

独PERT/CPM.

独Map routing.

独Seam carving.

独Texture mapping.

独Robot navigation.

独Typesetting in TeX.

独Currency exchange.

独Urban traffic planning.

独Optimal pipelining of VLSI chip.

独Telemarketer operator scheduling.

独Routing of telecommunications messages.

独Network routing protocols (OSPF, BGP, RIP).

独Optimal truck routing through given traffic congestion pattern.

 4

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path applications

http://en.wikipedia.org/wiki/Seam_carving

Shortest path variants

Which vertices?

独Single source: from one vertex s to every other vertex.

独Single sink: from every vertex to one vertex t.

独Source–sink: from one vertex s to another t.

独All pairs: between all pairs of vertices.

 
Restrictions on edge weights?

独Non-negative weights.

独Euclidean weights.

独Arbitrary weights.

 
Cycles?

独No directed cycles.

独No “negative cycles.”

 
Simplifying assumption. Each vertex is reachable from s.

 5

we assume this throughout today’s lecture
(even though some algorithms can handle negative weights)

Which variant in car GPS?

A. Single source: from one vertex s to every other vertex.

B. Single sink: from every vertex to one vertex t.

C. Source–sink: from one vertex s to another t.

D. All pairs: between all pairs of vertices.

 6

Shortest paths: quiz 1

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs

‣ properties

‣ Bellman–Ford algorithm

‣ Dijkstra’s algorithm

‣ topological sort algorithm

4.4 SHORTEST PATHS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

 8

Weighted directed edge API

Idiom for processing an edge e: int v = e.from(), w = e.to();

v

weight

w

 public class DirectedEdge

DirectedEdge(int v, int w, double weight) weighted edge v→w

int from() vertex v

int to() vertex w

double weight() weight of this edge

String toString() string representation

 9

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

public class DirectedEdge 
{ 
 private final int v, w; 
 private final double weight;

 

}

public DirectedEdge(int v, int w, double weight) 
{ 
 this.v = v; 
 this.w = w; 
 this.weight = weight;  
}

public int from()  
{ return v; }

public int to() 
{ return w; }

public double weight()  
{ return weight; }

from() and to() replace 
either() and other()

 10

Edge-weighted digraph API

Conventions. Allow self-loops and parallel edges.

 public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V) edge-weighted digraph with V vertices

void addEdge(DirectedEdge e) add weighted directed edge e

Iterable<DirectedEdge> adj(int v) edges adjacent from v

int V() number of vertices

int E() number of edges

Iterable<DirectedEdge> edges() all edges

 11

Edge-weighted digraph: adjacency-lists representation

Edge-weighted digraph representation

adj
0

1

2

3

4

5

6

7

0 2 .26 0 4 .38

Bag objects

reference to a
DirectedEdge

object

8
15
4 5 0.35
5 4 0.35
4 7 0.37
5 7 0.28
7 5 0.28
5 1 0.32
0 4 0.38
0 2 0.26
7 3 0.39
1 3 0.29
2 7 0.34
6 2 0.40
3 6 0.52
6 0 0.58
6 4 0.93

1 3 .29

2 7 .34

3 6 .52

4 7 .37 4 5 .35

5 1 .32 5 7 .28 5 4 .35

6 4 .93 6 0 .58 6 2 .40

7 3 .39 7 5 .28

tinyEWD.txt
V

E

 12

Edge-weighted digraph: adjacency-lists implementation in Java

Almost identical to EdgeWeightedGraph.

public class EdgeWeightedDigraph  
{ 
 private final int V;  
 private final Bag<DirectedEdge>[] adj;

}

public EdgeWeightedDigraph(int V) 
{ 
 this.V = V; 
 adj = (Bag<Edge>[]) new Bag[V]; 
 for (int v = 0; v < V; v++) 
 adj[v] = new Bag<DirectedEdge>(); 
}

public void addEdge(DirectedEdge e) 
{ 
 int v = e.from(), w = e.to(); 
 adj[v].add(e);  
}

public Iterable<DirectedEdge> adj(int v)  
{ return adj[v]; }

add edge e = v→w to

only v's adjacency list

 13

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

 public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in digraph G

double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v?

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs

‣ properties

‣ Bellman–Ford algorithm

‣ Dijkstra’s algorithm

4.4 SHORTEST PATHS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Goal. Find a shortest path from s to every other vertex. 

Observation. A shortest-paths tree (SPT) solution exists. Why?

 
Consequence. Can represent the SPT with two vertex-indexed arrays:

独 distTo[v] is length of a (shortest) path from s to v.

独 edgeTo[v] is last edge on a (shortest) path from s to v.

 15

Data structures for single-source shortest paths

shortest-paths tree from 0
Shortest paths data structures

 edgeTo[] distTo[]
 0 null 0
 1 5->1 0.32 1.05
 2 0->2 0.26 0.26
 3 7->3 0.37 0.97
 4 0->4 0.38 0.38
 5 4->5 0.35 0.73
 6 3->6 0.52 1.49
 7 2->7 0.34 0.60

Shortest paths data structures

 edgeTo[] distTo[]
 0 null 0
 1 5->1 0.32 1.05
 2 0->2 0.26 0.26
 3 7->3 0.37 0.97
 4 0->4 0.38 0.38
 5 4->5 0.35 0.73
 6 3->6 0.52 1.49
 7 2->7 0.34 0.60

parent-link representation
Shortest paths data structures

 edgeTo[] distTo[]
 0 null 0
 1 5->1 0.32 1.05
 2 0->2 0.26 0.26
 3 7->3 0.37 0.97
 4 0->4 0.38 0.38
 5 4->5 0.35 0.73
 6 3->6 0.52 1.49
 7 2->7 0.34 0.60

Shortest paths data structures

 edgeTo[] distTo[]
 0 null 0
 1 5->1 0.32 1.05
 2 0->2 0.26 0.26
 3 7->3 0.37 0.97
 4 0->4 0.38 0.38
 5 4->5 0.35 0.73
 6 3->6 0.52 1.49
 7 2->7 0.34 0.60

Goal. Find a shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

独 distTo[v] is length of a (shortest) path from s to v.

独 edgeTo[v] is last edge on a (shortest) path from s to v.

 16

Data structures for single-source shortest paths

 public double distTo(int v)

 { return distTo[v]; }

 public Iterable<DirectedEdge> pathTo(int v)

 {

 Stack<DirectedEdge> path = new Stack<DirectedEdge>();

 for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])

 path.push(e);

 return path;

 }

Relax edge e = v→w.

独 distTo[v] is length of shortest known path from s to v.

独 distTo[w] is length of shortest known path from s to w.

独 edgeTo[w] is last edge on shortest known path from s to w.

独If e = v→w yields shorter path to w, update distTo[w] and edgeTo[w].

 17

Edge relaxation

black edges
are in edgeTo[]

s

3.1

7.2 4.4

relax edge v→w

1.3

v

w

 18

Edge relaxation

Relax edge e = v→w.

独 distTo[v] is length of shortest known path from s to v.

独 distTo[w] is length of shortest known path from s to w.

独 edgeTo[w] is last edge on shortest known path from s to w.

独If e = v→w yields shorter path to w, update distTo[w] and edgeTo[w].

 private void relax(DirectedEdge e)

 {

 int v = e.from(), w = e.to();

 if (distTo[w] > distTo[v] + e.weight())

 {

 distTo[w] = distTo[v] + e.weight();

 edgeTo[w] = e;

 }

 }

What are the values of distTo[v] and distTo[w] after relaxing v→w ?  

A. 10.0 and 15.0

B. 10.0 and 17.0

C. 12.0 and 15.0

D. 12.0 and 17.0

 19

Shortest paths: quiz 2

s
5.0

v

w

distTo[v] = 10.0

distTo[w] = 17.0

 
 
 
 
 
 
 
 
 

Key properties.

独 distTo[v] is the length of a simple path from s to v.

独 distTo[v] does not increase.

 20

Framework for shortest-paths algorithm

For each vertex v: distTo[v] = ∞.

For each vertex v: edgeTo[v] = null.

distTo[s] = 0.

Repeat until done: 
 - Relax any edge.

Generic algorithm (to compute a SPT from s)

 
 
 
 
 
 
 
 
 
Efficient implementations.

独Which edge to relax next?

独How many edge relaxations needed?

 
Ex 1. Bellman–Ford algorithm.

Ex 2. Dijkstra’s algorithm.

Ex 3. Topological sort algorithm.
 21

Framework for shortest-paths algorithm

For each vertex v: distTo[v] = ∞.

For each vertex v: edgeTo[v] = null.

distTo[s] = 0.

Repeat until done: 
 - Relax any edge.

Generic algorithm (to compute a SPT from s)

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs

‣ properties

‣ Bellman–Ford algorithm

‣ Dijkstra’s algorithm

‣ topological sort algorithm

4.4 SHORTEST PATHS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

 23

Bellman–Ford algorithm

for (int i = 1; i < G.V(); i++)

 for (int v = 0; v < G.V(); v++)

 for (DirectedEdge e : G.adj(v))

 relax(e);

pass i (relax each edge)

For each vertex v: distTo[v] = ∞.

For each vertex v: edgeTo[v] = null.

distTo[s] = 0.

Repeat V-1 times: 
 - Relax each edge.

Bellman–Ford algorithm

Repeat V − 1 times: relax all E edges.

Bellman–Ford algorithm demo

 24

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

312

20

13

11

9

an edge-weighted digraph

0→1 5.0

0→4 9.0

0→7 8.0

1→2 12.0

1→3 15.0

1→7 4.0

2→3 3.0

2→6 11.0

3→6 9.0

4→5 4.0

4→6 20.0

4→7 5.0

5→2 1.0

5→6 13.0

7→5 6.0

7→2 7.0

Repeat V − 1 times: relax all E edges.

Bellman–Ford algorithm demo

 25

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

 26

Bellman–Ford algorithm: visualization

Bellman-Ford (250 vertices)

4 7 10

13 SPT

 passes

Proposition. Let s = v0 → v1 → v2 → … → vk = v be a shortest path from s to v. 
Then, after pass i, distTo[vi] = d *(vi).
 
Pf. [by induction on i]

独Inductive hypothesis: after pass i, distTo[vi] = d*(vi).

独Since distTo[vi+1] is the length of some path from s to vi+1, 
we must have distTo[vi+1] ≥ d*(vi+1).

独Immediately after relaxing edge vi → vi+1 in pass i+1, we have  
 distTo[vi+1] ≤ distTo[vi] + weight(vi, vi+1)

 = d*(vi) + weight(vi, vi+1)
 = d*(vi+1).

独Thus, at the end of pass i+1, distTo[vi+1] = d*(vi+1). !

 

Corollary. Bellman–Ford computes shortest path distances.

Pf. There exists a shortest path from s to v with at most V – 1 edges. 
 ⇒ ≤ V – 1 passes.

 27

Bellman–Ford algorithm: correctness proof

length of shortest
path from s to vi

v0 v1 vk…
s v

edge weights
are non-negative

 28

Observation. If distTo[v] does not change during pass i, no need to relax

any edge pointing from v in pass i + 1.

 
Queue-based implementation of Bellman–Ford. Maintain queue of vertices

whose distTo[] values needs updating.

 
 
 
 
 
 
 
 
Impact.

独In the worst case, the running time is still proportional to E × V.

独But much faster in practice.

Bellman–Ford algorithm: practical improvement

distTo[] changed in pass idistTo[] changed in pass i+1

Created by Gan Khoon Lay
from the Noun Project

relax vertex v

1 47 935

What is the order of growth of the running time of the queue-based
version of Bellman–Ford in the best case?  

A. V

B. V + E

C. V2

D. V E

 29

Shortest paths: quiz 3

0

1

8

3

6

2

4

7

5

relax vertices in order 0 1 8 5 4 7 3 6 2

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs

‣ properties

‣ Bellman–Ford algorithm

‣ Dijkstra’s algorithm

4.4 SHORTEST PATHS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

 31

Edsger W. Dijkstra: select quotes

Edsger W. Dijkstra
Turing award 1972

“ Do only what only you can do. ”
 
“ The use of COBOL cripples the mind; its teaching should,  
 therefore, be regarded as a criminal offence. ”
 
“ It is practically impossible to teach good programming to  
 students that have had a prior exposure to BASIC: as potential  
 programmers they are mentally mutilated beyond hope of  
 regeneration. ”
 
“ APL is a mistake, carried through to perfection. It is the  
 language of the future for the programming techniques  
 of the past: it creates a new generation of coding bums. ”

 32

Edsger W. Dijkstra: select quotes

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra’s algorithm demo

 33

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

312

20

13

11

9

an edge-weighted digraph

0→1 5.0

0→4 9.0

0→7 8.0

1→2 12.0

1→3 15.0

1→7 4.0

2→3 3.0

2→6 11.0

3→6 9.0

4→5 4.0

4→6 20.0

4→7 5.0

5→2 1.0

5→6 13.0

7→5 6.0

7→2 7.0

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra’s algorithm demo

 34

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

Dijkstra’s algorithm visualization

 35

Dijkstra’s algorithm visualization

 36

Invariant. For each vertex v in T, distTo[v] = d*(v).
 
Pf. [by induction on | T |]

独Let w be next vertex added to T.

独Let P be the s ↝ w path of length distTo[w].

独Consider any other s ↝ w path P ʹ.

独Let x→y be first edge in P ʹ that leaves T.

独P ʹ is no shorter than P :

Dijkstra’s algorithm: correctness proof

 37

P ʹ

T P

length(P) = distTo[w]

≤ distTo[y]

≤ distTo[x] + weight(x, y)

≤ length(Pʹ)

Dijkstra chose 
w instead of y

yx

w

s

length of shortest s ↝ v path

= d*(x) + weight(x, y)

by construction

relax vertex x

induction

weight are
non-negative ▪

Invariant. For each vertex v in T, distTo[v] = d*(v).
 
 
 
Corollary. Dijkstra’s algorithm computes shortest path distances.

Pf. Upon termination, T contains all vertices (reachable from s).

Dijkstra’s algorithm: correctness proof

 38

length of shortest s ↝ v path

 39

Dijkstra’s algorithm: Java implementation

public class DijkstraSP  
{

 private DirectedEdge[] edgeTo;  
 private double[] distTo; 
 

 public DijkstraSP(EdgeWeightedDigraph G, int s) 
 { 
 edgeTo = new DirectedEdge[G.V()]; 
 distTo = new double[G.V()];  

 
 for (int v = 0; v < G.V(); v++)  
 distTo[v] = Double.POSITIVE_INFINITY;  
 distTo[s] = 0.0;  
 
 
 
 
 
 
 
 
 } 
}

private IndexMinPQ<Double> pq;

pq = new IndexMinPQ<Double>(G.V());

pq.insert(s, 0.0);

while (!pq.isEmpty())

{

 int v = pq.delMin();

 for (DirectedEdge e : G.adj(v))

 relax(e);

}

relax vertices in order 
of distance from s

 40

Dijkstra’s algorithm: Java implementation

private void relax(DirectedEdge e)

{

 int v = e.from(), w = e.to();

 if (distTo[w] > distTo[v] + e.weight())

 {

 distTo[w] = distTo[v] + e.weight();

 edgeTo[w] = e;  
 
 

 }

}

if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);

else pq.insert (w, distTo[w]);
update PQ

Goal. Implement DECREASE-KEY operation in a binary heap.

0 1 2 3 4 5 6 7 8

 pq[] – v3 v5 v7 v2 v0 v4 v6 v1

DECREASE-KEY IN A PRIORITY QUEUE

 41

decrease key of vertex v2

v7

v0 v4 v6v2

v1

v5

v31

2 3

4 5 6 7

8

What is the order of growth of the running time of Dijkstra’s algorithm
in the worst case when using a binary heap for the priority queue?

A. V + E

B. V log V

C. E log V

D. E log E

 43

Shortest paths: quiz 4

 44

Depends on PQ implementation: V INSERT, V DELETE-MIN, ≤ E DECREASE-KEY.

 
 
 
 
 
 
 
 
 
 
Bottom line.

独Array implementation optimal for complete graphs.

独Binary heap much faster for sparse graphs.

独4-way heap worth the trouble in performance-critical situations.

独Fibonacci heap best in theory, but not worth implementing.

Dijkstra’s algorithm: which priority queue?

† amortized

PQ implementation INSERT DELETE-MIN DECREASE-KEY total

unordered array 1 V 1 V 2

binary heap log V log V log V E log V

d-way heap logd V d logd V logd V E logE / V V

Fibonacci heap 1 † log V † 1 † E + V log V

Priority-first search

Dijkstra’s algorithm seem familiar?

独Prim’s algorithm is essentially the same algorithm.

独Both in same family of algorithms.

 
Main distinction: rule used to choose next vertex for the tree.

独Prim: Closest vertex to the tree (via an undirected edge).

独Dijkstra: Closest vertex to the source (via a directed path).

 
 
 
 
 
 
 
 
Note: DFS and BFS are also in same family.

 45

Algorithm for shortest paths

Variations on a theme: vertex relaxations.

独Bellman–Ford: relax all vertices; repeat V − 1 times.

独Dijkstra: relax vertices in order of distance from s.

独Topological sort: relax vertices in topological order.

 46

algorithm worst-case
running time

negative
weights †

directed 
cycles

Bellman–Ford E V ✔ ✔

Dijkstra E log V ✔

topological sort E ✔

† no negative cycles

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs

‣ properties

‣ Bellman–Ford algorithm

‣ Dijkstra’s algorithm

4.4 SHORTEST PATHS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Seam carving. [Avidan–Shamir] Resize an image without distortion for

display on cell phones and web browsers.

 48

Content-aware resizing

http://www.youtube.com/watch?v=vIFCV2spKtg

http://www.youtube.com/watch?v=vIFCV2spKtg

Seam carving. [Avidan–Shamir] Resize an image without distortion for

display on cell phones and web browsers.

 
 
 
 
 
 
 
 
 
 
 
 
 
In the wild. Photoshop, Imagemagick, GIMP, ...

 49

Content-aware resizing

To find vertical seam:

独Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.

独Weight of pixel = “energy function” of 8 neighboring pixels.

独Seam = shortest path (sum of vertex weights) from top to bottom.

 50

Content-aware resizing

To find vertical seam:

独Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.

独Weight of pixel = “energy function” of 8 neighboring pixels.

独Seam = shortest path (sum of vertex weights) from top to bottom.

 51

Content-aware resizing

seam

To remove vertical seam:

独Delete pixels on seam (one in each row).

 52

Content-aware resizing

seam

To remove vertical seam:

独Delete pixels on seam (one in each row).

 53

Content-aware resizing

Q1. How to model vertex weights (along with edge weights)?

 
 
 
 
 
Q2. How to model multiple sources and sinks?

 54

SHORTEST PATH VARIANTS IN A DIGRAPH

a

b

x
c

e
dv

a
v

b

v ʹ
c

e
dx

