4.4 Shortest Paths

- APls
- properties
- Bellman-Ford algorithm
- Dijkstra's algorithm

Robert Sedgewick I Kevin Wayne

https://algs4.cs.princeton.edu

Shortest paths in an edge-weighted digraph
Given an edge-weighted digraph, find the shortest path from s to t.

edge-weighted digr	
$4->5$	0.35
$5->4$	0.35
$4->7$	0.37
$5->7$	0.28
$7->5$	0.28
$5->1$	0.32
$0->4$	0.38
$0->2$	0.26
$7->3$	0.39
$1->3$	0.29
$2->7$	0.34
$6->2$	0.40
$3->6$	0.52
$6->0$	0.58
$6->4$	0.93

$$
\begin{array}{cc}
\text { shortest path from } 0 \text { to } 6 & \text { length of path }=1.51 \\
0 \rightarrow 2 \rightarrow 7 \rightarrow 3 \rightarrow 6 & (0.26+0.34+0.39+0.52)
\end{array}
$$

Google maps

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving. \longleftarrow see Assignment 7
- Texture mapping.
- Robot navigation.
- Typesetting in TeX.
- Currency exchange.

http://en.wikipedia.org/wiki/Seam_carving
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

Shortest path variants

Which vertices?

- Single source: from one vertex s to every other vertex.
- Single sink: from every vertex to one vertex t.
- Source-sink: from one vertex s to another t.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Non-negative weights.
we assume this throughout today's lecture (even though some algorithms can handle negative weights)
- Euclidean weights.
- Arbitrary weights.

Cycles?

- No directed cycles.
- No "negative cycles."

Simplifying assumption. Each vertex is reachable from s.

Shortest paths: quiz 1

Which variant in car GPS?

A. Single source: from one vertex s to every other vertex.
B. Single sink: from every vertex to one vertex t.
C. Source-sink: from one vertex s to another t.
D. All pairs: between all pairs of vertices.

4.4 Shortest Paths

- APls

Algorithms

Robert Sedgewick | Kevin Wayne

- properties

Bellman-Ford algorithm

- Diikstra's algorithm
- topologisal sort algorithm
https://algs4.cs.princeton.edu

Weighted directed edge API

public class DirectedEdge

\quad DirectedEdge(int v, int w, double weight)	weighted edge $v \rightarrow w$
int from()	vertex v
int to()	vertex w
doub7e weight()	weight of this edge
String toString()	string representation

Idiom for processing an edge e: int $v=e . f r o m(), w=e . t o() ;$

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

```
public class DirectedEdge
{
    private final int v, w;
    private final double weight;
    public DirectedEdge(int v, int w, double weight)
    {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }
    public int from()
    { return v; }
    public int to()
    { return w; }
    public double weight()
    { return weight; }
}
```


Edge-weighted digraph API

```
public class EdgeWeightedDigraph
```

	EdgeWeightedDigraph(int	edge-weighted digraph with V
voi	addEdge(DirectedEdge e)	add weighted directed edge e
Iterable<DirectedEdg	adj(int v)	edges adjacent from v
	V()	number of vertices
	E()	number of edges
Iterable<DirectedEdge	edges()	all edges

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation

Edge-weighted digraph: adjacency-lists implementation in Java

Almost identical to EdgeWeightedGraph.

```
public class EdgeWeightedDigraph
{
    private final int V;
    private final Bag<DirectedEdge>[] adj;
    public EdgeWeightedDigraph(int V)
    {
        this.V = V;
        adj = (Bag<Edge>[]) new Bag[V];
        for (int v = 0; v < V; v++)
        adj[v] = new Bag<DirectedEdge>();
    }
    public void addEdge(DirectedEdge e)
    {
        int v = e.from(), w = e.to();
        adj[v].add(e);
    }
    public Iterable<DirectedEdge> adj(int v)
    { return adj[v]; }
}
```


Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```
public class SP
```

SP(EdgeWeightedDigraph G, int s) shortest paths from s in digraph G double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v)
boolean hasPathTo(int v)
shortest path from s to v
is there a path from s to v ?

4.4 Shortest Paths

APHs

- properties

Algorithms

■ Bellman-Ford algorithm

Diikstra's algorithm

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Data structures for single-source shortest paths

Goal. Find a shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of a (shortest) path from s to v.
- edgeTo[v] is last edge on a (shortest) path from s to v.

shortest-paths tree from 0

	distTo[]	edgeTo[]
0	0	null
1	1.05	$5->1$
2	0.32	
2	0.26	$0->2$

parent-link representation

Data structures for single-source shortest paths

Goal. Find a shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of a (shortest) path from s to v.
- edgeTo[v] is last edge on a (shortest) path from s to v.

```
public double distTo(int v)
{ return distTo[v]; }
public Iterable<DirectedEdge> pathTo(int v)
{
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    for (DirectedEdge e = edgeTo[v]; e != nul1; e = edgeTo[e.from()])
        path.push(e);
    return path;
}
```


Edge relaxation

Relax edge $e=v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v .
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e=v \rightarrow w$ yields shorter path to w, update distTo[w] and edgeTo[w].
relax edge $v \rightarrow w$

Edge relaxation

Relax edge $e=v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v .
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e=v \rightarrow w$ yields shorter path to w, update distTo[w] and edgeTo[w].

```
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```

Shortest paths: quiz 2

What are the values of distTo $[v]$ and distTo $[w]$ after relaxing $v \rightarrow w$?
A. $\quad 10.0$ and 15.0
B. $\quad 10.0$ and 17.0
C. $\quad 12.0$ and 15.0
D. $\quad 12.0$ and 17.0

Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: distTo[v] $=\infty$.
For each vertex v: edgeTo[v] = null.
distTo[s] $=0$.
Repeat until done:

- Relax any edge.

Key properties.

- distTo[v] is the length of a simple path from s to v.
- distTo[v] does not increase.

Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: distTo[v] $=\infty$.
For each vertex v: edgeTo[v] = null.
distTo[s] $=0$.
Repeat until done:

- Relax any edge.

Efficient implementations.

- Which edge to relax next?
- How many edge relaxations needed?

Ex 1. Bellman-Ford algorithm.
Ex 2. Dijkstra's algorithm.
Ex 3. Topological sort algorithm.

4.4 Shortest Paths

Algorithms

Robert Sedgewick | Kevin Wayne

APHs

- properties
- Bellman-Ford algorithm
- Dijkstra's algorithm
- topological sort algorithm

Bellman-Ford algorithm

Bellman-Ford algorithm

For each vertex v: distTo[v] $=\infty$.
For each vertex v: edgeTo[v] = null.
distTo[s] $=0$.
Repeat V-1 times:

- Relax each edge.

```
for (int i = 1; i < G.V(); i++)
    for (int v = 0; v < G.V(); v++)
        for (DirectedEdge e : G.adj(v))
        relax(e);
```


Bellman-Ford algorithm demo

Repeat $V-1$ times: relax all E edges.

Bellman-Ford algorithm demo

Repeat $V-1$ times: relax all E edges.

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	$0 \rightarrow 1$
2	14.0	$5 \rightarrow 2$
3	17.0	$2 \rightarrow 3$
4	9.0	$0 \rightarrow 4$
5	13.0	$4 \rightarrow 5$
6	25.0	$2 \rightarrow 6$
7	8.0	$0 \rightarrow 7$

shortest-paths tree from vertex s

Bellman-Ford algorithm: visualization

Bellman-Ford algorithm: correctness proof

Proposition. Let $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k}=v$ be a shortest path from s to v.
Then, after pass i, distTo $\left[v_{i}\right]=d^{*}\left(v_{i}\right)$.

Pf. [by induction on i]

length of shortest path from s to v_{i}

s

v

- Inductive hypothesis: after pass i, $\operatorname{distTo}\left[v_{i}\right]=d^{*}\left(v_{i}\right)$.
- Since distTo $\left[v_{i+1}\right]$ is the length of some path from s to v_{i+1}, we must have distTo $\left[v_{i+1}\right] \geq d^{*}\left(v_{i+1}\right)$.
- Immediately after relaxing edge $v_{i} \rightarrow v_{i+1}$ in pass $i+1$, we have

$$
\begin{aligned}
\operatorname{distTo}\left[v_{i+1}\right] & \leq \operatorname{distTo}\left[v_{i}\right]+\operatorname{weight}\left(v_{i}, v_{i+1}\right) \\
& =d^{*}\left(v_{i}\right)+\operatorname{weight}\left(v_{i}, v_{i+1}\right) \\
& =d^{*}\left(v_{i+1}\right) .
\end{aligned}
$$

- Thus, at the end of pass $i+1$, $\operatorname{distTo}\left[v_{i+1}\right]=d^{*}\left(v_{i+1}\right)$.

Corollary. Bellman-Ford computes shortest path distances.
Pf. There exists a shortest path from s to v with at most $V-1$ edges.

$$
\Rightarrow \leq V-1 \text { passes. }
$$

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass $i+1$.

Queue-based implementation of Bellman-Ford. Maintain queue of vertices whose distTo[] values needs updating.

Impact.

- In the worst case, the running time is still proportional to $E \times V$.
- But much faster in practice.

Shortest paths: quiz 3

What is the order of growth of the running time of the queue-based version of Bellman-Ford in the best case?
A. V
B. $\quad V+E$
C. V^{2}
D. $V E$

```
relax vertices in order 018547362
```


4.4 Shortest Paths

APH

- properties

Algorithms

- Bellman-Forol algorithm
- Dijkstra's algorithm

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Edsger W. Dijkstra: select quotes

" Do only what only you can do."
" The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence."
" It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of

Edsger W. Dijkstra Turing award 1972 regeneration."
" APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums."
$\Phi^{\prime} \square^{\prime}, \in \mathrm{N} \rho \subset \mathrm{S} \leftarrow \leftarrow \leftarrow \square \leftarrow(3=\mathrm{T}) \vee \mathrm{M} \wedge 2=\mathrm{T} \leftarrow \mathrm{S}^{\prime} /\left(\mathrm{V} \Phi^{\prime \prime} \subset \mathrm{M}\right),\left(\mathrm{V} \Theta^{\prime \prime} \subset \mathrm{M}\right),(\mathrm{V}, \Phi \mathrm{V}) \Phi^{\prime \prime}\left(\mathrm{V}, \mathrm{V} \leftarrow 1^{-1}\right) \ominus^{\prime \prime} \subset \mathrm{M}^{\prime}$

Edsger W. Dijkstra: select quotes

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

shortest-paths tree from vertex s

Dijkstra's algorithm visualization

Dijkstra's algorithm visualization

Dijkstra's algorithm: correctness proof

Invariant. For each vertex v in T, distTo $[v]=d^{*}(v)$.

Pf. [by induction on $|T|$]

- Let w be next vertex added to T.
- Let P be the $s \rightarrow w$ path of length distTo[w].
- Consider any other $s \rightarrow w$ path P^{\prime}.
- Let $x \rightarrow y$ be first edge in P^{\prime} that leaves T.
- P^{\prime} is no shorter than P :
(x) ---- - (y) $=$

length $(P)=\operatorname{distTo}[w]$
non-negative $\longrightarrow \leq$ length $\left(P^{\prime}\right)$.

Dijkstra's algorithm: correctness proof

Invariant. For each vertex v in T, $\operatorname{distTo}[v]=d^{*}(v)$.
length of shortest $s \rightarrow v$ path

Corollary. Dijkstra's algorithm computes shortest path distances. Pf. Upon termination, T contains all vertices (reachable from s).

Dijkstra's algorithm: Java implementation

```
public class DijkstraSP
{
    private DirectedEdge[] edgeTo;
    private doub7e[] distTo;
    private IndexMinPQ<Double> pq;
    pub1ic DijkstraSP(EdgeWeightedDigraph G, int s)
    {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        pq = new IndexMinPQ<Double>(G.V());
        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;
        pq.insert(s, 0.0);
        while (!pq.isEmpty())
        {
            int v = pq.de\Min();
```



```
relax vertices in order
                        of distance from s
        for (DirectedEdge e : G.adj(v))
                relax(e);
            }
    }
}
```


Dijkstra's algorithm: Java implementation

```
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
        if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
        else pq.insert (w, distTo[w]);
    }
}
```


DECREASE-KEY IN A PRIORITY QueUE

Goal. Implement DeCREASE-Key operation in a binary heap.

Shortest paths: quiz 4
What is the order of growth of the running time of Dijkstra's algorithm in the worst case when using a binary heap for the priority queue?
A. $\quad V+E$
B. $\quad V \log V$
C. $E \log V$
D. $E \log E$

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: V Insert, V Delete-Min, $\leq E$ Decrease-Key.

PQ implementation	INSERT	DELETE-MIN	DECREASE-KEY	total
unordered array	1	V	1	V^{2}
binary heap	$\log V$	$\log V$	$\log V$	$E \log V$
d-way heap	$\log _{d} V$	$d \log _{d} V$	$\log _{d} V$	$E \log _{E / V} V$
Fibonacci heap	1^{\dagger}	$\log V^{\dagger}$	1^{\dagger}	$E+V \log V$
\dagger amortized				

Bottom line.

- Array implementation optimal for complete graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Priority-first search

Dijkstra's algorithm seem familiar?

- Prim's algorithm is essentially the same algorithm.
- Both in same family of algorithms.

Main distinction: rule used to choose next vertex for the tree.

- Prim: Closest vertex to the tree (via an undirected edge).
- Dijkstra: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in same family.

Algorithm for shortest paths

Variations on a theme: vertex relaxations.

- Bellman-Ford: relax all vertices; repeat $V-1$ times.
- Dijkstra: relax vertices in order of distance from s.
- Topological sort: relax vertices in topological order.

algorithm	worst-case running time	negative weights \dagger	directed cycles
Bellman-Ford	$E V$	$\boldsymbol{\nu}$	$\boldsymbol{\nu}$
Dijkstra	$E \log V$		$\boldsymbol{\gamma}$
topological sort	E		

\dagger no negative cycles

4.4 Shortest Paths

Algorithms

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Content-aware resizing

Seam carving. [Avidan-Shamir] Resize an image without distortion for display on cell phones and web browsers.

Shai Avidan
Mitsubishi Electric Research Lab
Ariel Shamir
The interdisciplinary Center \& MERL

Content-aware resizing

Seam carving. [Avidan-Shamir] Resize an image without distortion for display on cell phones and web browsers.

In the wild. Photoshop, Imagemagick, GIMP, ...

Content-aware resizing

To find vertical seam:

- Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = "energy function" of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.

Content-aware resizing

To find vertical seam:

- Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = "energy function" of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.

Content-aware resizing

To remove vertical seam:

- Delete pixels on seam (one in each row).

Content-aware resizing

To remove vertical seam:

- Delete pixels on seam (one in each row).

Shortest Path Variants in a Digraph

Q1. How to model vertex weights (along with edge weights)?

Q2. How to model multiple sources and sinks?

