COS 226, FALL 2018

ALGORITHMS and DATA STRUCTURES

KEVIN WAYNE · MAIA GINSBURG · IBRAHIM ALBLUWI

INTRO TO COS 226

motivation

course structure

assessments

resources

Algorithms

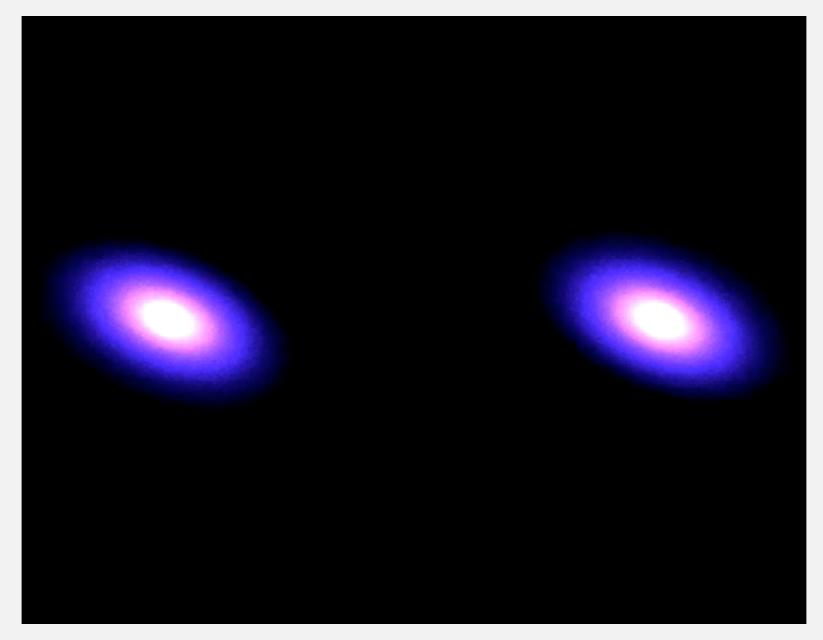
ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

What is COS 226?

- Intermediate-level survey course.
- Programming and problem solving, with applications.
- Algorithm: sequence of instructions for solving a problem.
- Data structure: method to organize data in a computer.

topic	data structures and algorithms
data types	stack, queue, union-find, priority queue
sorting	quicksort, mergesort, heapsort, radix sorts
searching	BST, red-black BST, hash table
graphs	BFS, DFS, Prim, Kruskal, Dijkstra
strings	KMP, regular expressions, tries, data compression
advanced	k-d tree, suffix array, maxflow


Why study algorithms and data structures?

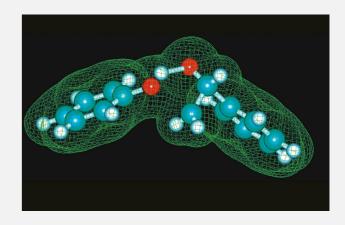
Their impact is broad and far-reaching.

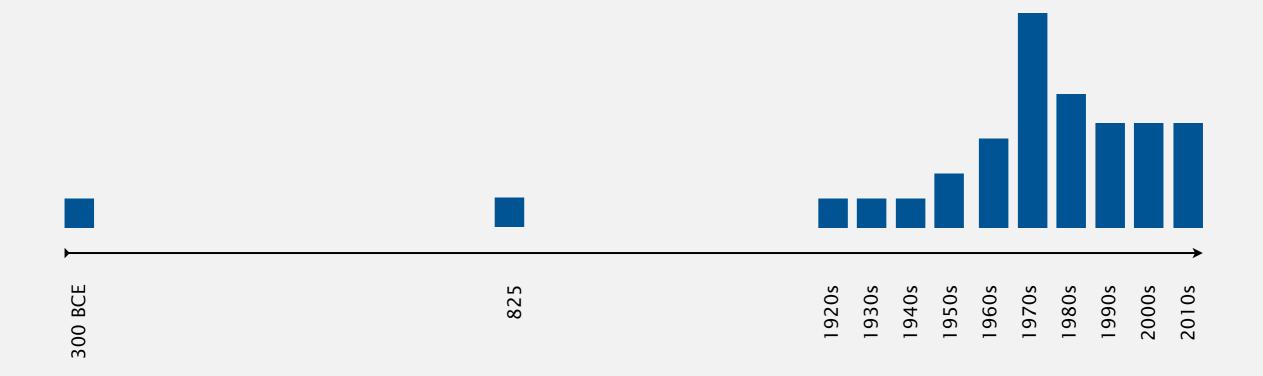
Why study algorithms and data structures?

To solve problems that could not otherwise be addressed.

http://www.youtube.com/watch?v=ua7YIN4eL_w

They may unlock the secrets of life and of the universe.


- "Computer models mirroring real life have become crucial for most advances made in chemistry today.... Today the computer is just as important a tool for chemists as the test tube."
 - Royal Swedish Academy of Sciences
 (Nobel Prize in Chemistry 2013)


Martin Karplus, Michael Levitt, and Arieh Warshel

Why study algorithms and data structures?

Old roots, new opportunities.

- Study of algorithms dates at least to Euclid.
- Named after Muḥammad ibn Mūsā al-Khwārizmī.
- Formalized by Church and Turing in 1930s.
- Some important algorithms were discovered by undergrads in a course like this!

To become a proficient programmer.

" I will, in fact, claim that the difference between a bad programmer and a good one is whether he considers his code or his data structures more important. Bad programmers worry about the code. Good programmers worry about data structures and their relationships."

— Linus Torvalds (architect of Linux and git)

For intellectual stimulation.

"For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense, and even mysterious.
But once unlocked, they cast a brilliant new light on some aspect of computing." - Francis Sullivan

Why study algorithms and data structures?

Why study algorithms and data structures?

- Their impact is broad and far-reaching.
- To solve problems that could not otherwise be addressed.
- They may unlock the secrets of life and of the universe.
- Old roots, new opportunities.
- To become a proficient programmer.
- For intellectual stimulation.
- For fun and profit.

INTRO TO COS 226

• course structure

motivation

assessments

resources

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Live lectures. Introduce new material.

What	When	Where	Who	Office Hours
L01	TTh 11-12:20	Thomas Lab 003	Kevin Wayne	M 1:30-3:30pm

Electronic devices. Permitted *only* to support lecture (e.g., viewing slides and taking notes).

iClicker

Student response system (required).

- Any hardware version of iClicker.
 (use iClicker Reef at your own risk, WiFi issues?)
- Register your iClicker in Blackboard. 1
- Available at Labyrinth Books (\$30).

save serial number
 to maintain resale value

Which model of iClicker are you using?

- A. iClicker.
- **B.** iClicker+.
- **C.** iClicker 2.
- **D.** iClicker Reef.

Discussion, problem-solving, assignment prep, ...

Maia Ginsburg ≥ Faculty Lead Preceptor

Ibrahim Albluwi ≥ Faculty Lead Preceptor

Allison Chang ≥ Graduate Student Preceptor

Lisa Jian ⊠ Graduate Student Preceptor

Ross Teixeira ⋈ Graduate Student Preceptor

Qasim Nadeem ⋈ Graduate Student Preceptor

Discussion, problem-solving, assignment prep, ...

What	When	Where	Who
P01	F 10-10:50am	Friend 009	Ibrahim Albluwi
P01A	F 10-10:50am	Friend 108	Lisa Jian
P02	F 11-11:50am	Friend 009	Ibrahim Albluwi
P02A	F 11-11:50am	Friend 108	Allison Chang
P03	F 12:30-1:20pm	Friend 009	Maia Ginsburg
P03A	F 12:30-1:20pm	Friend 108	Qasim Nadeem
P04	F 1:30-2:20pm	Friend 009	Ross Teixeira
P05	Th 3:30-4:20pm	Friend 009	Maia Ginsburg

- Recap of material discussed during the week.
- Q&A session.
- Active learning activities.

- Q. Required?
- A. No. Intended for students seeking extra help to keep up with the course.

When	Where	Who
F 3-4pm	ТВА	Ross Teixeira

INTRO TO COS 226

Algorithms

assessments

resources

union-find

course structure

motivation

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Programming assignments

Implement an efficient algorithm or data structure.

Solve an interesting application using a "textbook" algorithm.

Programming assignments

New IntelliJ-based programming environment (highly recommended).

- Continuous inspection; integrated Checkstyle and Findbugs.
- Autoformat, autoimport, and autocomplete.
- Embedded bash terminal.

		hello: /Users/wayne/Desktop/hello/HelloWorld.java
🔲 Project 👻 🚠 🛱 —	🛃 logo.j	ong × C HelloWorld.java ×
▼ 📭 hello [COS 226] sources	1	
C HelloWorld	2	* Name: Alan Turing
a logo.png	3	* NetID: aturing
WELCOME.txt	4	* Precept: P00
Scratches and Consoles	5	
	6	* Partner Name: Ada Lovelace
	/	* Partner NetID: alovelace
	8	* Partner Precept: P00
	9 10	* * Description: Prints 'Hello, World' to the terminal window.
	11	* By tradition, this is everyone's first program.
	12	* Prof. Brian Kernighan initiated this tradition in 1974.
	13	*
	14	*******
	15	
	16	<pre>public class HelloWorld {</pre>
	17	<pre>public static void main(String[] args) {</pre>
	18	System.out.println("Hello, World");
	19	}
	20	}
	21	
		18:44 LF 🗢 UTF-8 🕈 🍗 曼 🔾

- 2–3 short questions per lecture.
- 3 attempts per question.
- Use pencil and paper.

Quizzera	Wayne Logout
Courses / Algorithms and Data Structures / Union Find	
Quick Find	
Attempts Remaining: 1	Quiz Ends in 2 days.
New Attempt	Attempts -
Question Give the id[] array that results from the following sequence of 6 union operations on a set of 10 items using the quick-find algorithm. 5-7 3-2 4-3 1-6 0-7 4-9 Recall: our quick-find convention for the union operation p-q is to change id[p] (and perhaps some other entries) but not id[q].	
Answer Your answer should be a sequence of 10 integers (between 0 and 9), separated by whitespace. Submit	
About	

Midterm and final

Written exams.

- Questions drawn from quizzes and lectures.
- Emphasizes non-programming material.

COS 226	Algorithms and Data Structures	Fall 2017
	Midterm	

This exam has 10 questions (including question 0) worth a total of 55 points. You have 80 minutes. This exam is preprocessed by a computer, so please **write darkly** and **write your answers inside the designated spaces.**

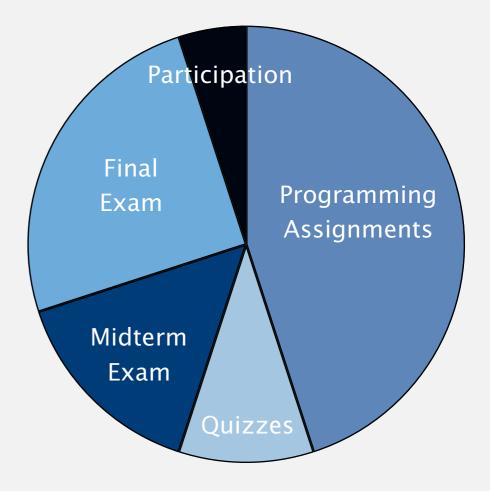
Policies. The exam is closed book, except that you are allowed to use a one page cheatsheet (8.5-by-11 paper, one side, in your own handwriting). No electronic devices are permitted.

Grading

Programming assignments. 45%

- Due at 11pm on Mondays via TigerFile.
- Collaboration/lateness policies: see web.

Quizzes. 10%


- Due at 11pm on Fridays via Quizzera.
- Collaboration/lateness policies: see web.

Exams. 15% + 25%

- Midterm (in class on Tuesday, October 23).
- Final (to be scheduled by Registrar).

Participation. 5%

- Attend and participate in precept/lecture.
- Answer questions on Piazza.

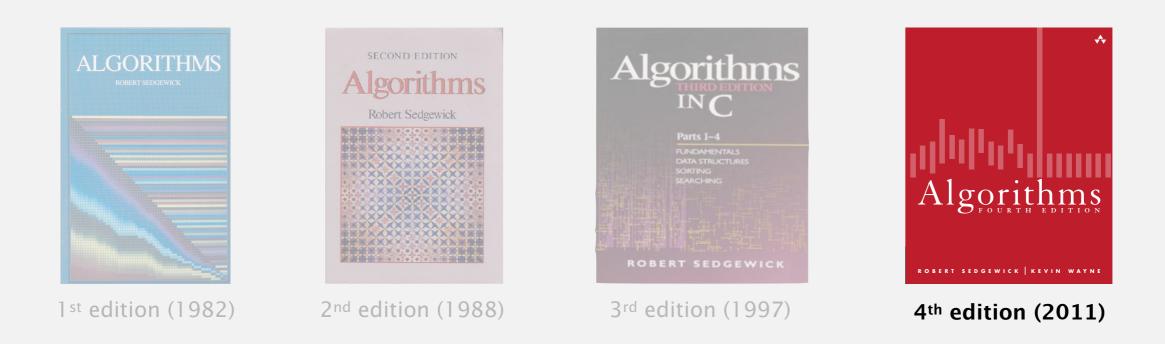
INTRO TO COS 226

Algorithms

• resources

assessments

motivation

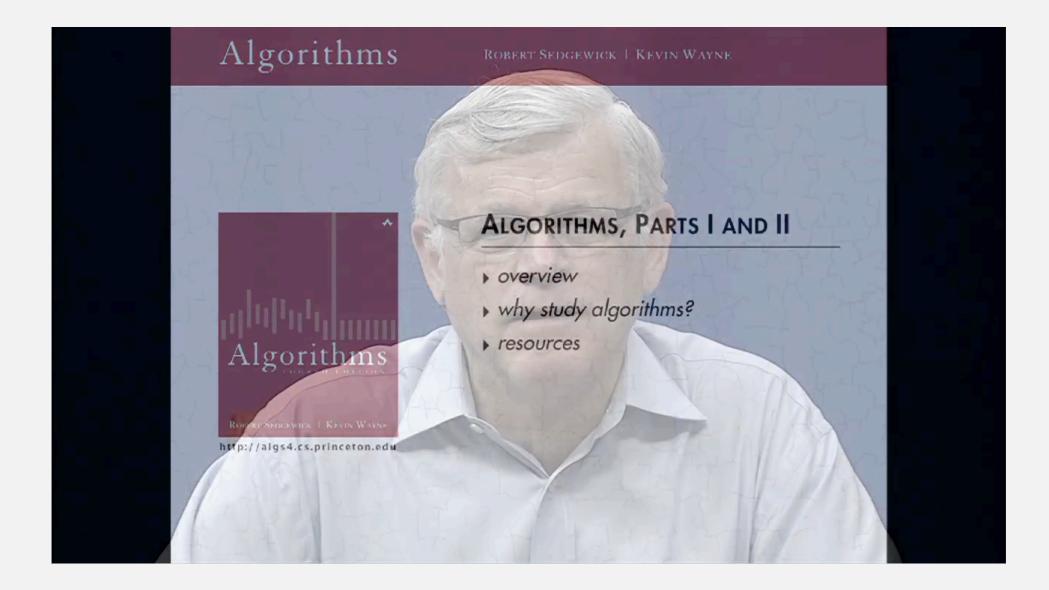

course structure

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

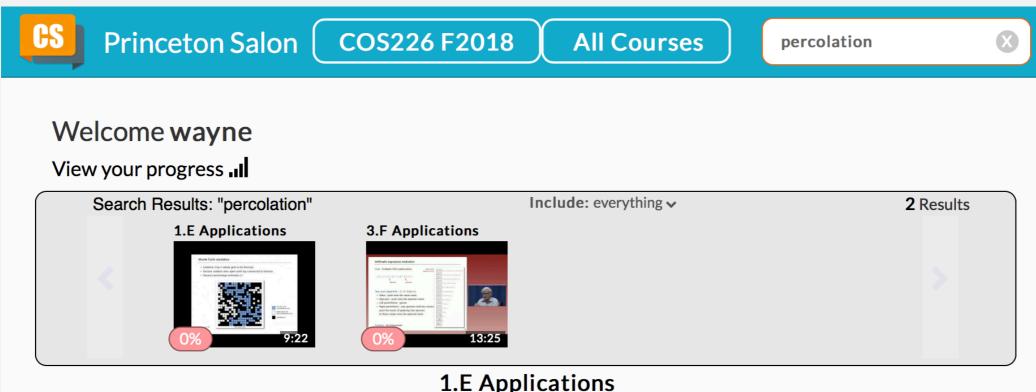
Resources (textbook)

Readings (required). Algorithms 4th edition by R. Sedgewick and K. Wayne, Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.


Available in various formats.

- Online: Amazon (\$85 hardcover, \$60 Kindle, \$40 rent), ...
- Brick-and-mortar: Labyrinth Books (\$60 hardcover).
- On reserve: Engineering library.

Resources (videos)


Lecture videos (optional).

- Missed lecture.
- Review for exams.

Lecture videos (optional).

- Missed lecture.
- Review for exams.

0:56 So, the one we're going to talk about now is called **percolation**.

- 2:49 That's just a few examples of the percolation model.
- 6:17 So the percolation model on the left corresponds to the, connection model on the right, according to what we've been doing.
- 7:41 And that's where we get the result that, by running enough simulations for a big-enough n, that this, **percolation** threshold is about.

Resources (web)

Course content.

- Course info.
- Lecture slides.
- Programming assignments.
- Quizzes.
- Exam archive.

Syllabus Lectures Precepts Assignments Quizzes Exams

SYLLABUS

Description. This course surveys the most important algorithms and data structures in use on computers today. Particular emphasis is given to algorithms for sorting, searching, graphs, and strings. The course concentrates on developing implementations, understanding their performance characteristics, and estimating their potential effectiveness in applications.

Prerequisites. COS 126 or ISC 231–234 or approval by the COS placement officer.

Lectures. Lectures meet twice per week, at 11–12:20pm on Tuesdays and Thursdays in Thomas Lab 003. Laptops, tablets, and phones are prohibited, except for activities directly related to lecture, such as viewing lecture slides and taking notes.

http://www.princeton.edu/~cos226

Booksite.

- Brief summary of content.
- Download code from book.
- APIs and Javadoc.

^	ALGORITHMS, 4TH EDITION
Algorithms	essential information that every serious programmer needs to know about algorithms and data structures
ROBERT SEDGEWICK KEVIN WAYNE	Textbook. The textbook <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne [Amazon · Addison-Wesley] surveys the most important algorithms and data structures in use today. The textbook is organized into six chapters:
ALGORITHMS, 4TH EDITION 1. Fundamentals 2. Sorting	 Chapter 1: Fundamentals introduces a scientific and engineering basis for comparing algorithms and making predictions. It also includes our programming model.
3. Searching 4. Graphs	 Chapter 2: Sorting considers several classic sorting algorithms, including insertion sort, mergesort, and quicksort. It also includes a binary heap implementation of a priority queue.
5. Strings 6. Context	 Chapter 3: Searching describes several classic symbol table implementations, including binary search trees, red-black trees, and hash tables.

http://algs4.cs.princeton.edu

Resources (people)

Piazza discussion forum.

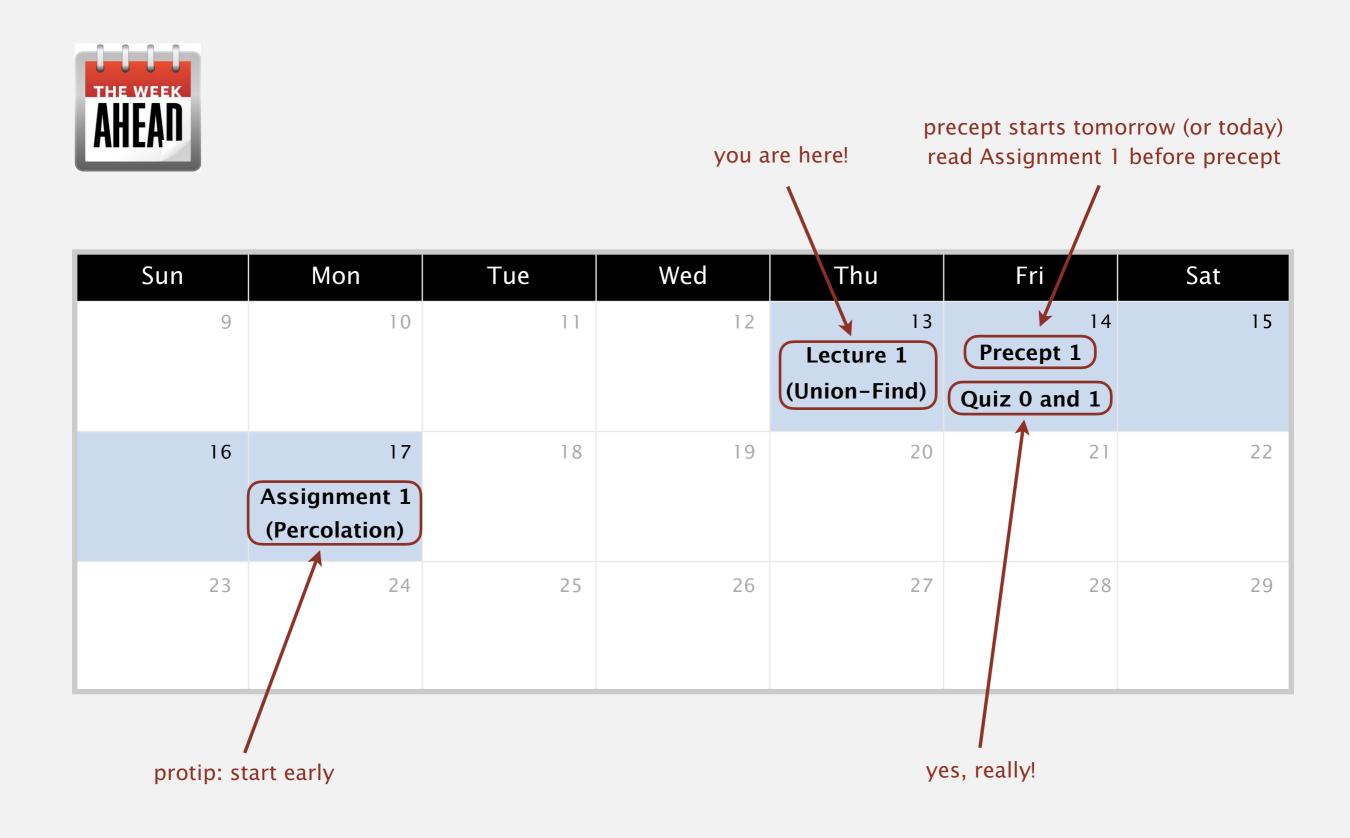
- Low latency, low bandwidth.
- See Piazza for guidelines.

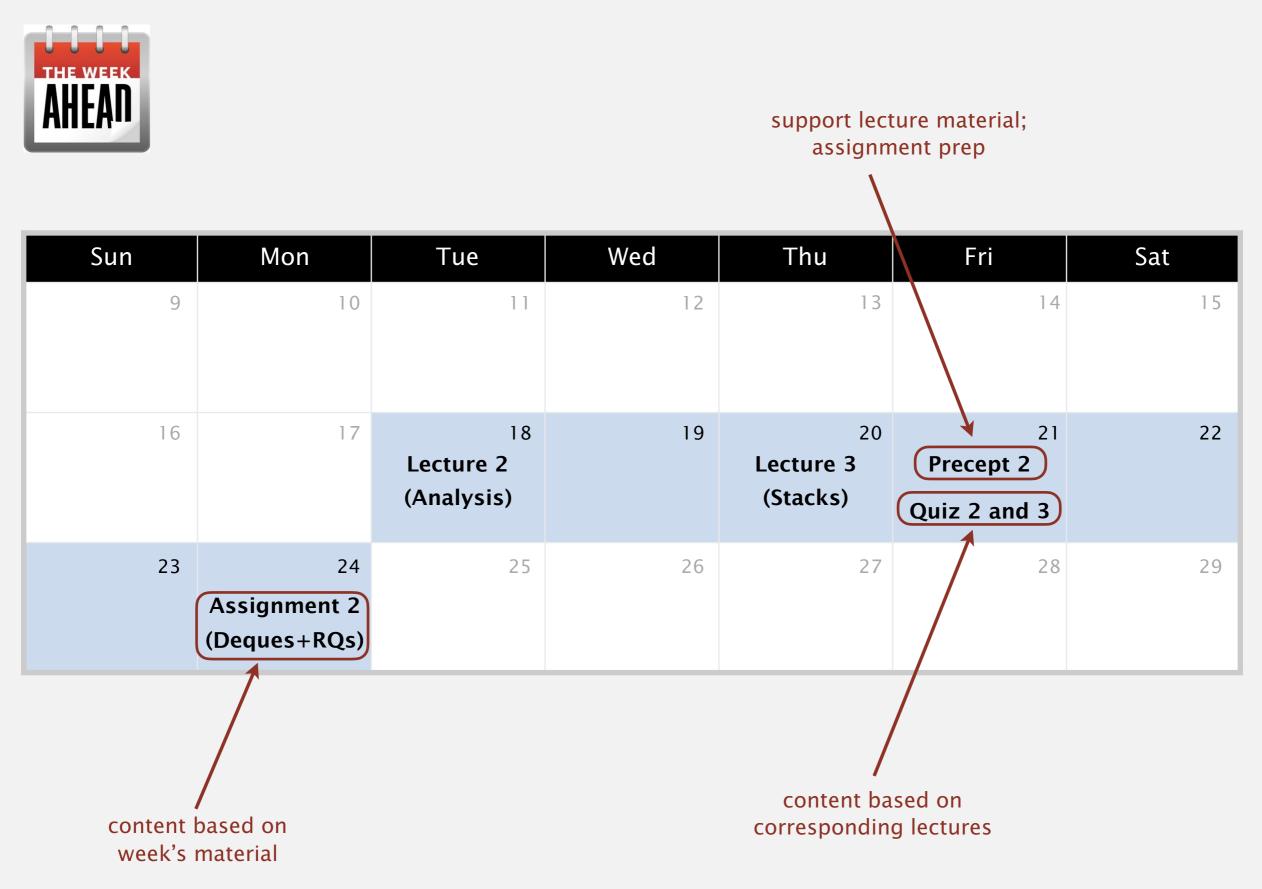
http://piazza.com/princeton/fall2018/cos226

Office hours.

- High bandwidth, high latency.
- See web for schedule.

Computing laboratory.


- Undergrad lab TAs.
- For help with debugging.
- See web for schedule.



http://www.princeton.edu/~cos226

http://labta.cs.princeton.edu

Not registered? We are currently exceeding the room capacity. Change precept? Use TigerHub. All possible precepts closed? See Colleen Kenny-McGinley in CS 210.

Haven't taken COS 126? See COS placement officer. Placed out of COS 126? Review Sections 1.1–1.2 of Algorithms 4/e.

