Traveling Salesperson Problem

Java — Tips and Tricks

Dr. Jeremie Lumbroso

A

set of N cities circuit (or “tour”) with shortest outline

« Traveling Salesperson needs to drive to N cities, using least amount of gas/mileage

2 y 4

. >

YW
Py ATA
AT

« How many possibilities? N! orderings / (2 directions * N starting points) = 1/2*(N-1)"
« For N=5,1/2"(N-1D! = 12; more generally, 1/2 (N-1! ~ .5 NN which is exponential

Vancouver
anaimoo

Thunder Bay Saguenay Rimousk
o (o}

Québec City
o

Frederict

Manitoulin

Island Part Ottawa Monc;.'cal
®

Sherbrooke .
[o) Sai

Toronto
Mississauga®© *

o
London - Hamilton §

Lubkock -

*
Abilene
2

Hermosillo
o]
Chihuahua
o
Delicias
Ciudad
Obregon

Navojoa
o Parral

Los l\gochls Monterrey
Guamuchil Saltillo
o

SINALO? assau

o The
Culiacédn Bahamas

Durango . TAMAULIPAS
o Mexico

o
Mazatlan Ciudad

© 2018 William Cook, http:/~/www.math.uwaterloo.ca/tsp/

Shortest-possible tour to 49,603 sites from the National Register of Historic Places

http://www.math.uwaterloo.ca/tsp/

Combinatorial Optimization Problems

« Only way to find optimum for TSP Is
to look at all possibilities until
finding best one(s)

» Possibilities grow exponentially!!!
Performance of naive approach IS
factorial, N!

 |n practice, heuristics can exploit
specificities of a dataset or problem
to perform accurately and efficiently

- But TSP belongs to broader class of
universally difficult problems (NP-
hard)—details in upcoming lectures

Two Heuristics

Measure increase = (Length of both
dashed lines) - (Length of dotted line)

Some Application _'

« School bus routing, since 1972

» (Delivery) vehicle routing in city,
since 1974

» Order picking problem in o Py AT b
warehouses, since 19383 S 7

» Drilling Printed Circuit Boards
(PCBs), since 1991

» Military mission planning, since
19906, and In UAVS, since 1998

- Many other applications, in
genomics, in medicine, etc.

20 x 23
D §AD

, LL

https://bit.ly/TSPApplicationsPDF

https://bit.ly/TSPApplicationsPDF

Assignment Specifics

Your Job: Implement the Tour API

Tour Instance

4 _,Q

Assignment Inputs and Goals

- You have to implement a class Tour. java

- You are provided with Poi1nt. java, the Node class, several test clients
and sample datasets, to check whether your implementation is correct

» The assignment introduces you to linked lists
see use of Point
see Node definition and use
see Tour.size(), Tour.length()
Tour.toString()

Tour.insertNearest() and other

TSPVisualizer (1)

222222

- Test client provided in the project files, which uses
oo your Tour implementation, calling the following to
color the outlines, before Tour .draw():

» Can take a starting set of points; and outputs points
N its diagram to the console

« |nitially heuristic and
heuristic appear similar
« The heuristic does not always do
un pols:? what we intuitively want it to: It depends on the order

smallest: 948.1489072576663 IN which points have been added, not proximity

TSPVisualizer (2)

Challenge for the Bored 1

|
& Can you systematically +

num points: 6 }

build bad sequences of
points for our nearest
neighbor heuristic? Write a
program to generate bad
sequences?

num points: 6
nearest: 1153.619930510847
smallest: 929.3708006652812

nearest: 1153.619930510847
smallest: 929.3708006652812

Tips and Tricks

The Point API

- No way to access the x or y coordinate of a Point class instance
+ InTour.length(), to measure perimeter of tour:
+ Use Point.distanceTo()
+ InTour.toString(), to list coordinates of all points:
+ Use Point.toString()
» InTour.draw(), to draw the outline of the tour:
+ Use Point.drawTo()

Circular Linked List

Standard Draw

hefd Tour instance
: Polnt instance : Polnt instance
Nod§|nstance (0.2, 0.2) Nodlemstance (0.2, 0.8)
p - p: ‘
next: > next:
. : Point instance : Point instance
Nogg instance (0.5, 5.5) NOS? Instance (0.8, 0.2)
next: . next: public static void main(String[] args) {

// Or: Tour square = createSquareTour(0.6, 0.2);

Tour square = new Tour(new Point(0.2, 0.2),
new Point(0.2, 0.8),
new Point(0.8, 0.8),

new Point(0.8, 0.2));
square.draw();

// Create a square tour of side alpha, shifted by beta
private static Tour createSquareTour(double alpha, double beta) {

}
//

private static boolean testOne(double alpha) {

/] ..

int
for

Make Helper Functions for Testing

Standard Draw

return new Tour(
new Point(beta
new Point(beta
new Point(beta
new Point(beta

0.0, beta + 0.0),

0.0, beta + 1.0 * alpha),

1.0 » alpha, beta + 1.0 * alpha),
1.0 = alpha, beta + 0.0)

+ + + +

);

Tour test = createSquareTour(alpha);

boolean sizeTest = (test.size() = 4);

boolean lengthTest = (Math.abs(test.length() - 4.0 * alpha) < 0.001);
return sizeTest & lengthTest;

drawSquareTour(0.4, 0.5);

. possibly called this way in main() ... -

NUM_TEST REPETITIONS = 1000; Any methOd that makes It

(int 1 = 0; i < NUM_TEST REPETITIONS; i++) { = -

double alpha = StdRandom.uniform(@.5, 100.0); easler to wrlte more teslts

if (!testOne(alpha)) I]
StdOut.println("testOne failed, alpha = " + alpha); IS a QOOd helper methOd-

Helper Functions for Insertion

- Modularity is often very desirable: Part of the point of functions
« Helper functions can be useful in many situations

 To avoid duplicating the same logic in several places:

// Insert a new node containing poilnt newPoint right after
// the node that 1s referenced by the parameter cursor

private void insertPointAfter(Node cursor, Point newPoint)

« To make the calling code clearer, by abstracting a complicated
sequence of operations to a function

// Compute the increase 1n tour length that would result from
// 1nserting point newPoint after the node at cursor

private double computeIncrease(Node cursor, Point newPoint)

O nodes

w« Taurisance Edlge-cases/Base cases?

a1 » Correctly identifying [smallest possible number of]

LoCh edge-casel(s) for list operations, helps code complexity
head Tour Instance

oint instance » Usingthedo { ... } while (...) construct allows
(0.2, 9.2) you to writer shorter code

 Circular istvsSsnormal lists saves you a few edge cases..

many nodes

public int traverseCircularList() f{

head TOUI' inStaﬂCe // <... some initialization...>
[

Point instance
(0.2, 0.2)
// <... do something with element x ...>
X = X.next;

} while (x == first);
Point instance Point instance
(0.8, 0.8) (0.8, 0.2) // <... some more work...>

return ... ;

- if (head = null) return ...;
Point instance

(0.2, ®-8) Node X = head;

Pseudo-Code for TSP Approximation

tour <« |[]
for 1 = 1 to N:

p <« pointsToInsert[i]
bestValueSoFar & <default value>

bestCandidateSoFar < null

for each polnt x on tour:

1f computeValue(x, p) < bestValueSoFar:
bestValueSoFar < computeValue(x, p)
bestCandidateSoFar <« x

insertPointAfter(bestCandidateSoFar, p)

October 2016
WUTTOW] e M(es : " |
LY.

i
e Ty
6
. L
- ’
s "
|
A .
”~

g a)

https://bit.ly/TSPOrfionArti

[...] Left turns mean 1dling, which increases the time a route takes. Left turns
mean going against traffic, which increases exposure to oncoming cars. Right
turns are faster. Right turns save fuel.

Because most UPS managers have been UPS drivers, they have driven the routes
and plotted on maps how to drive them with as many right-hand loops as
possible. They knew right turns were the way to go, but that knowledge was in
their heads.

"Before computers, engineering was about measurement and process," says Jack
Levis, senior director of process management at UPS. "UPS has always believed
1n data, not intuition."

Eventually, UPS's technology caught up with experience. The result is ORION
(or On-Road Integrated Optimization and Navigation). By optimizing
delivery routes 1n regard to distance, fuel and time, ORION seeks to solve the
Traveling Salesman Problem, which has stumped scientists for more than 200
years. |...]

Real-World Example: Additional Constraints

» UPS routinely computes TSP tours

» Eliminating 1 mile, per driver, per day
over one year can save up to $50 million

» [ypical optimization: Prefer right-turns
over left-turns (essentially because they
require less idling)

© 2018 State of California

The Lin-Kernighan Heuristic

c d c d
An Effective Heuristic Algorithm for the Traveling-
Salesman Problem
S. Lin and B. W. Kernighan
Bell Telephone Laboratories, Incorporated, Murray Hill, N.J.
(Received October 15, 1971)
This paper discusses a highly effective heuristic procedure for generating
optimum and near-optimum solutions for the symmetric traveling-salesman
problem. The procedure is based on a general approach to heuristics that is
believed to have wide applicability in combinatorial optimization problems. e
a b a b

The procedure produces optimum solutions for all problems tested, ‘classical’
problems appearing in the literature, as ,well as randomly generated test prob-
lems, up to 110 cities. Run times grow approximately as #?%; in absolute

terms, a typical 100-city problem requires less than 25 seconds for one case . PRI . .
(GE635), and about three minutes to obtain the optimum with above 95 per Figure 1. A 2-Opt move: original tour on the left and resulting tour on the right.

cent confidence.
ren an n by n symmetric /_\
-length tour that visits € d e d
ler notions such as time, c f‘ C f

L +
L L)
fr ‘
esent any such measure.
= mited success.!! Exact
\ » methods produce good
SHEN LIN, t . d t
Voiiiniis : iefe put provide no guarantee
] F and Brian heuristics, effectiveness
Kernighan, also .
standing, review pre has been little work
3 an INOS-
designed
eaionk; s a method that solves
proposal with .
Long Lines reasonable time. How- I
a b

representatives,

left to-right. Jim ass, the procedure must
Metzler, Don pranch and bound—and

Harrington and

R e Jay Marowitz. ey report on is 64 cities.
— 4 1 who use several fast,

- 1tions, and then apply

"‘ ."‘,,M

.

Figure 2. Two possible 3-Opt moves: original tour on the left and resulting tours on the right.

:Iztell'action”)bi'o tr y(;(())(l)' © 1995 Johnson & McGeod A °
0 large problems
the results are generally h t t b 1 t o 1 TS PH 1 S t 0 r PD F

suboptimal. (Wehaveimprovedonthreeof their ive 100-city problems.) Further-

http://bit.ly/TSPHistoryPDF

Challenge for the Bored

private static double[] extractPointByText(Point p) {

String s = p. toStrlng()

String x B VAR ;
int cursor = 1;

// Extract first number

while (s.charAt(cursor) = ',"') {
X += s.charAt(cursor);
CUrSOT++;

}

// Skip whitespace

while (s.charAt(cursor)
s.charAt(cursor)
CUrSOr++;

// Extract second number

while (s.charAt(cursor) = ')') {
y += s.charAt(cursor);
CUTSOT++;

}

return new double[] { Double.parseDouble(x),

Double.parseDouble(y) };

How to circumvent an API to get the
information you want/need?

private static double[] extractPointByMath(Point p) {
double hypotenuse = p.distanceTo(new Point(0, 0));
double other = p.distanceTo(new Point(hypotenuse, 0));

double angle = Math.toDegrees(
Math.acos((other / 2.0) / hypotenuse));
double otherAngle = 90.0 - (180.0 - 2 * angle);

double x = Math.sin(Math.toRadians(otherAngle)) * hypotenuse;
double y = Math.cos(Math.toRadians(otherAngle)) * hypotenuse;

return new double[] { x, v };

sin P = x/hyp
cos 3 = y/hyp

new Point(0.0, 0.0)

new Point(hypotenuse, 0.0)

Analysis

My timings: Timing of a single random instance of size N with both heuristics

N lengthNearest | timeNearest | lengthSmallest | timeSmallest
500 18934 0.00 11168 0.00
1000 PAYAAS 0.01 15929 0.01
2000 37855 0.01 22281 0.01
4000 52117 0.04 31029 0.05
8000 74289 0.21 43780 0.27
16000 105392 1.27 62208 1.41
32000 149731 6.30 37921 6.44
64000 210791 43.36 123992 32.81

128000 297889 248.15 175256 230.00

First experiment that last longer than 60 seconds

We assume the performance
IS polynomial:

fIN) = aN’

Thus we can use the doubling
method:

f2N) a(2N)’
fIN) aN®

With which we solve:

_(fCN)
ST
_feN)
o
2N)!

// Create set of N random points (borrowed from ISPTimer.java)

private static Point[] randomPointSet(int N) {
double 10 = 0.0, hl1 = 600.0;
Point[] testSet = new Point[N];
for (int i = 0; i < N; i++) {
double x = StdRandom.uniform(lo, hi);

double y = StdRandom.uniform(lo, hi);
testSet[i] = new Point(x, vy);

}

return testSet;

// Time both heuristics with a random instance of N points

private static String timeSingleBoth(int N) {
Point[] testSet = randomPointSet(N);

// < ... do computations and measure with Stopwatch

return (N + "," +
lengthNearest + "," +
elapsedNearest + "," +
lengthSmallest + "," +

elapsedSmallest);

[B J >

Ptsp$ javac-introcs Tour.java & & java-introcs Tour

N, lengthNearest, timeNearest, lengthSmallest, timeSmallest
500,18934.05221355573,0.003,11167.986279062763,0.003
1000,26774.506922171782,0.005,15929.489748561908,0.008
2000,37854.70037288836,0.008,22280.73070191083,0.012
4000,52116.85594778351,0.037,31028.759032544785,0.047
8000,74289.35199621355,0.211,43780.067587295074,0.272
16000,105391.61893569703,1.273,62207.724440124504,1.406
32000,149730.9366426918,6.304,87920.95460680297,6.437
64000,210791.2207307945,43.358,123991.9159385805,32.81
128000,297889.0396289771,248.149,175256.2756630417,230.003

My TSP Analysis

File Edit View Insert Format Data Tools Add-ons

™~ ~ m TP 100% $ % .0_ .00 123 Arial

=round(log(C3/C2,2),2)
A B C D

lengthNearest timeNearest dbINearest
500 18934.05221 0.003
1000 26774.50692 0.005
2000 37854.70037 0.008
4000 52116.85595 0.037
8000 74289.352 0.211
16000 105391.6189 1.273
32000 149730.9366 6.304
64000 210791.2207 43.358
128000 297889.0396 248.149

© 00 N O O B W N -

SO IO O T T B
o oA W N - O

Sheet1

Creating and preparing a datase

® 2. jlumbroso@Jeremies-MBP:~/GoogleDrive/Teaching/COS126/assignments/tsp (...

Help

Better Estimates Through Averaging

My TSP Analysis [~
File Edit View Insert Format Data Tools Add-ons Help

F For more accurate readings, must average timing across K

different executions (with K different random sets of points)
~ ~ @ P 100% $ % .0_ .00 123 Arial

=
=round(log(C:/C2,2),2)
A B C D E C D E F

lengthNearest timeNearest dbINearest lengthS

500 18934.05221 1116
1000 26774.50692 : 15929
2000 37854.70037 : 2228
4000 52116.85595 : 31028
8000 74289.352 : 43780

16000 105391.6189 : 6220
32000 149730.9366 : 87920
64000 210791.2207 : 12399

128000 297889.0396 248.149 1752

—

nearestAvgTime dblNearest smallestAvgTime dblSmallest

500 9.00E-04 0.0017
1000 10 0.0014 0.0032
2000 10 0.0073 0.0112
4000 10 0.0346 0.0475
8000 10 0.1942 0.2442
16000 10 1.174 : 1.2777
atats . s 6.5816

Question for the Curious 316238

Compute the ratio of the
length of the tour created
with the nearest heuristic,
and with smallest increase
heuristic?

© 00 N O O B W N -

S
© © N o o n W/ N

—_
RSN

U P U B G R
(o) IS) BERENS ~ NN S I S

Sheet1

Have fun!

| am sticking around to
answer questions

