
Traveling Salesperson Problem
Java — Tips and Tricks

Dr. Jérémie Lumbroso

Traveling Salesperson Problem
set of N cities circuit (or “tour”) with shortest outline

• Traveling Salesperson needs to drive to N cities, using least amount of gas/mileage

• How many possibilities? N! orderings / (2 directions * N starting points) = 1/2*(N–1)!

• For N=5, 1/2*(N-1)! = 12; more generally, 1/2 (N-1)! ~ .5 NN which is exponential

1

2 3
4

5

© 2018 William Cook, http://www.math.uwaterloo.ca/tsp/

Shortest-possible tour to 49,603 sites from the National Register of Historic Places

http://www.math.uwaterloo.ca/tsp/

Combinatorial Optimization Problems
• Only way to find optimum for TSP is

to look at all possibilities until
finding best one(s)

• Possibilities grow exponentially!!!
Performance of naive approach is
factorial, N!

• In practice, heuristics can exploit
specificities of a dataset or problem
to perform accurately and efficiently

• But TSP belongs to broader class of
universally difficult problems (NP-
hard)—details in upcoming lectures

123
60

360

2520

100 trillion

Two Heuristics

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Nearest neighbor: select nearest point and insert after it.

1

2

3

1

2

3

1

2

3

1

2

3

Smallest increase: select point that minimizes increase.

Measure increase = (Length of both
dashed lines) - (Length of dotted line)

Some Applications
• School bus routing, since 1972

• (Delivery) vehicle routing in city,
since 1974

• Order picking problem in
warehouses, since 1983

• Drilling Printed Circuit Boards
(PCBs), since 1991

• Military mission planning, since
1996, and in UAVs, since 1998

• Many other applications, in
genomics, in medicine, etc.

https:!//bit.ly/TSPApplicationsPDF

https://bit.ly/TSPApplicationsPDF

Assignment Specifics

Your Job: Implement the Tour API
public class Tour {
 public Tour() !// creates an empty tour
 public Tour(Point a, Point b, Point c, Point d) !// creates the 4-point tour
 !// a!->b!->c!->d!->a (for debugging)
 public int size() !// returns the number of points in this tour
 public double length() !// returns the length of this tour
 public String toString() !// returns string representation of this tour
 public void draw() !// draws this tour to standard drawing
 public void insertNearest(Point p) !// inserts p using nearest neighbor heuristic
 public void insertSmallest(Point p) !// inserts p using smallest increase heuristic

 !// tests this class
 public static void main(String[] args)
}

1

2 3 4

5Point[]
Tour

Tour

Tour instance

Node
instance

Point
instance Node

instance

Point
instance

Node
instance

Point
instance Node

instance

Point
instance

head

Assignment Inputs and Goals
• You have to implement a class Tour.java

• You are provided with Point.java, the Node class, several test clients
and sample datasets, to check whether your implementation is correct

• The assignment introduces you to linked lists

• Can you use a data type that is provided to you? see use of Point

• Can you use a private node type? see Node definition and use

• Can you traverse a list? see Tour.size(), Tour.length()

• What about when there are different base cases? Tour.toString()

• Can you modify a circular list? Tour.insertNearest() and other

TSPVisualizer (1)
• Test client provided in the project files, which uses

your Tour implementation, calling the following to
color the outlines, before Tour.draw():

• StdDraw.setPenColor(StdDraw.RED);

• Can take a starting set of points; and outputs points
in its diagram to the console

• Initially nearest neighbor heuristic and smallest
increase heuristic appear similar

• The nearest neighbor heuristic does not always do
what we intuitively want it to: It depends on the order
in which points have been added, not proximity

TSPVisualizer (2)
Challenge for the Bored 1

Can you systematically
build bad sequences of

points for our nearest
neighbor heuristic? Write a
program to generate bad

sequences?

Tips and Tricks

The Point API
public class Point {
 public Point(double x, double y) !// creates the point (x, y)
 public double distanceTo(Point that) !// returns the Euclidean distance between the two points
 public void draw() !// draws this point to standard drawing
 public void drawTo(Point that) !// draws the line segment between the two points
 public String toString() !// returns a string representation of this point
}

• No way to access the x or y coordinate of a Point class instance

• In Tour.length(), to measure perimeter of tour:

• Use Point.distanceTo()

• In Tour.toString(), to list coordinates of all points:

• Use Point.toString()

• In Tour.draw(), to draw the outline of the tour:

• Use Point.drawTo()

Challenge for the Bored 2
I can think of two ways to
extract the coordinates
anyway, a math-based

and text-based method.
Can you figure them out?

Circular Linked List

public static void main(String[] args) {

 !// Or: Tour square = createSquareTour(0.6, 0.2);

 Tour square = new Tour(new Point(0.2, 0.2),
 new Point(0.2, 0.8),
 new Point(0.8, 0.8),
 new Point(0.8, 0.2));
 square.draw();
}

Tour instance

Node instance
p:
next:

Point instance
(0.2, 0.2)

Node instance
p:
next:

Point instance
(0.2, 0.8)

Node instance
p:
next:

Point instance
(0.8, 0.8)

Node instance
p:
next:

Point instance
(0.8, 0.2)

head

(0.8, 0.2) (0.8, 0.8)

(0.2, 0.2) (0.2, 0.8)

Make Helper Functions for Testing
!// Create a square tour of side alpha, shifted by beta
private static Tour createSquareTour(double alpha, double beta) {
 return new Tour(
 new Point(beta + 0.0, beta + 0.0),
 new Point(beta + 0.0, beta + 1.0 * alpha),
 new Point(beta + 1.0 * alpha, beta + 1.0 * alpha),
 new Point(beta + 1.0 * alpha, beta + 0.0)
);
}

drawSquareTour(0.4, 0.5);
drawSquareTour(0.85, 0.1);

0.1

0.85

Any method that makes it
easier to write more tests
is a good helper method!

!//
private static boolean testOne(double alpha) {
 Tour test = createSquareTour(alpha);
 boolean sizeTest = (test.size() !== 4);
 boolean lengthTest = (Math.abs(test.length() - 4.0 * alpha) !<= 0.001);
 return sizeTest !&& lengthTest;
}

!//!!... possibly called this way in main() !!...
int NUM_TEST_REPETITIONS = 1000;
for (int i = 0; i < NUM_TEST_REPETITIONS; i!++) {
 double alpha = StdRandom.uniform(0.5, 100.0);
 if (!testOne(alpha))
 StdOut.println("testOne failed, alpha = " + alpha);
}

• Modularity is often very desirable: Part of the point of functions

• Helper functions can be useful in many situations

• To avoid duplicating the same logic in several places:

• To make the calling code clearer, by abstracting a complicated
sequence of operations to a function

Helper Functions for Insertion

!// Compute the increase in tour length that would result from
!// inserting point newPoint after the node at cursor

private double computeIncrease(Node cursor, Point newPoint)

!// Insert a new node containing point newPoint right after
!// the node that is referenced by the parameter cursor

private void insertPointAfter(Node cursor, Point newPoint)

Edge-cases/Base cases?Tour instancehead

null

0 nodes

Tour instance

Node instance
p:
next:

Point instance
(0.2, 0.2)

head

1 node

Tour instance

Node instance
p:
next:

Point instance
(0.2, 0.2) Node instance

p:
next:

Point instance
(0.2, 0.8)

Node instance
p:
next:

Point instance
(0.8, 0.8)

Node instance
p:
next:

Point instance
(0.8, 0.2)

head

many nodes public int traverseCircularList() {
 !// <!!... some initialization!!...>

 if (head !== null) return !!...;

 Node x = head;
 do {
 !// <!!... do something with element x !!...>
 x = x.next;
 } while (x !!= first);

 !// <!!... some more work!!...>

 return !!...;
}

• Correctly identifying [smallest possible number of]
edge-case(s) for list operations, helps code complexity

• Using the do { !!... } while (!!...) construct allows
you to writer shorter code

• Circular list vs. normal lists saves you a few edge cases...

Pseudo-Code for TSP Approximation

tour !<- []
for i = 1 to N:

p !<- pointsToInsert[i]
bestValueSoFar !<- <default value>
bestCandidateSoFar !<- null

for each point x on tour:
if computeValue(x, p) < bestValueSoFar:

bestValueSoFar !<- computeValue(x, p)
bestCandidateSoFar !<- x

insertPointAfter(bestCandidateSoFar, p)

Real-World Example: Additional Constraints

• UPS routinely computes TSP tours

• Eliminating 1 mile, per driver, per day
over one year can save up to $50 million

• Typical optimization: Prefer right-turns
over left-turns (essentially because they
require less idling)

© 2018 State of California

ORION: The algorithm proving
that left isn't right

October 2016

[...] Left turns mean idling, which increases the time a route takes. Left turns
mean going against traffic, which increases exposure to oncoming cars. Right
turns are faster. Right turns save fuel.
Because most UPS managers have been UPS drivers, they have driven the routes
and plotted on maps how to drive them with as many right-hand loops as
possible. They knew right turns were the way to go, but that knowledge was in
their heads.
"Before computers, engineering was about measurement and process," says Jack
Levis, senior director of process management at UPS. "UPS has always believed
in data, not intuition."
Eventually, UPS's technology caught up with experience. The result is ORION
(or On-Road Integrated Optimization and Navigation). By optimizing
delivery routes in regard to distance, fuel and time, ORION seeks to solve the
Traveling Salesman Problem, which has stumped scientists for more than 200
years. [...]

© 2016 UPS

https:!//bit.ly/TSPOrionArticle

The Lin-Kernighan Heuristic

http:!//bit.ly/TSPHistoryPDF
© 1995 Johnson & McGeod

http://bit.ly/TSPHistoryPDF

Challenge for the Bored
private static double[] extractPointByText(Point p) {
 String s = p.toString();
 String x = "", y = "";
 int cursor = 1;

 !// Extract first number
 while (s.charAt(cursor) !!= ',') {
 x += s.charAt(cursor);
 cursor!++;
 }

 !// Skip whitespace
 while (s.charAt(cursor) !== ' ' !||
 s.charAt(cursor) !== ',')
 cursor!++;

 !// Extract second number
 while (s.charAt(cursor) !!= ')') {
 y += s.charAt(cursor);
 cursor!++;
 }

 return new double[] { Double.parseDouble(x),
 Double.parseDouble(y) };
}

private static double[] extractPointByMath(Point p) {
 double hypotenuse = p.distanceTo(new Point(0, 0));
 double other = p.distanceTo(new Point(hypotenuse, 0));

 double angle = Math.toDegrees(
 Math.acos((other / 2.0) / hypotenuse));
 double otherAngle = 90.0 - (180.0 - 2 * angle);

 double x = Math.sin(Math.toRadians(otherAngle)) * hypotenuse;
 double y = Math.cos(Math.toRadians(otherAngle)) * hypotenuse;

 return new double[] { x, y };
}

new Point(0.0, 0.0)

hyp
ote

nus
e

new Point(hypotenuse, 0.0)

other

!

β = 90 –
(180 – 2!)

p

sin β = x/hyp
cos β = y/hyp

How to circumvent an API to get the
information you want/need?

Analysis
My timings: Timing of a single random instance of size N with both heuristics

N lengthNearest timeNearest lengthSmallest timeSmallest

500 18934 0.00 11168 0.00

1000 26775 0.01 15929 0.01

2000 37855 0.01 22281 0.01

4000 52117 0.04 31029 0.05

8000 74289 0.21 43780 0.27

16000 105392 1.27 62208 1.41

32000 149731 6.30 87921 6.44

64000 210791 43.36 123992 32.81

128000 297889 248.15 175256 230.00

First experiment that last longer than 60 seconds

b = log2 (f(2N)
f(N))

a =
f(2N)
(2N)b

f(N) = aNb

We assume the performance
is polynomial:

f(2N)
f(N)

=
a(2N)b

aNb

Thus we can use the doubling
method:

With which we solve:

Creating and preparing a dataset
!// Create set of N random points (borrowed from TSPTimer.java)
private static Point[] randomPointSet(int N) {
 double lo = 0.0, hi = 600.0;
 Point[] testSet = new Point[N];
 for (int i = 0; i < N; i!++) {
 double x = StdRandom.uniform(lo, hi);
 double y = StdRandom.uniform(lo, hi);
 testSet[i] = new Point(x, y);
 }
 return testSet;
}

!// Time both heuristics with a random instance of N points
private static String timeSingleBoth(int N) {
 Point[] testSet = randomPointSet(N);

 !// <!!... do computations and measure with Stopwatch !!...>

 return (N + "," +
 lengthNearest + "," +
 elapsedNearest + "," +
 lengthSmallest + "," +
 elapsedSmallest);
}

N,lengthNearest,timeNearest,lengthSmallest,timeSmallest
500,18934.05221355573,0.003,11167.986279062763,0.003
1000,26774.506922171782,0.005,15929.489748561908,0.008
2000,37854.70037288836,0.008,22280.73070191083,0.012
4000,52116.85594778351,0.037,31028.759032544785,0.047
8000,74289.35199621355,0.211,43780.067587295074,0.272
16000,105391.61893569703,1.273,62207.724440124504,1.406
32000,149730.9366426918,6.304,87920.95460680297,6.437
64000,210791.2207307945,43.358,123991.9159385805,32.81
128000,297889.0396289771,248.149,175256.2756630417,230.003

Better Estimates Through Averaging
For more accurate readings, must average timing across K
different executions (with K different random sets of points)

Question for the Curious
Compute the ratio of the
length of the tour created
with the nearest heuristic,
and with smallest increase

heuristic?

Have fun!
I am sticking around to

answer questions

