Traveling Salesperson Problem

Java - Tips and Tricks

Traveling Salesperson Problem

set of N cities

1

circuit (or "tour") with shortest outline

- Traveling Salesperson needs to drive to N cities, using least amount of gas/mileage
- How many possibilities? N! orderings / (2 directions * N starting points) = 1/2*(N-1)!
- For $N=5,1 / 2^{*}(N-1)$! = 12; more generally, $1 / 2(N-1)!\sim .5 N^{N}$ which is exponential

Shortest-possible tour to 49,603 sites from the National Register of Historic Places

Combinatorial Optimization Problems

- Only way to find optimum for TSP is to look at all possibilities until finding best one(s)
- Possibilities grow exponentially!!! Performance of naive approach is factorial, N!
- In practice, heuristics can exploit specificities of a dataset or problem to perform accurately and efficiently
- But TSP belongs to broader class of universally difficult problems (NP-hard)-details in upcoming lectures

Two Heuristics

Nearest neighbor: select nearest point and insert after it.

1

Measure increase $=$ (Length of both
dashed lines) - (Length of dotted line)

Some Applications

- School bus routing, since 1972
- (Delivery) vehicle routing in city, since 1974
- Order picking problem in warehouses, since 1983
- Drilling Printed Circuit Boards (PCBs), since 1991
- Military mission planning, since 1996, and in UAVs, since 1998
- Many other applications, in genomics, in medicine, etc.

Assignment Specifics

Your Job: Implement the Tour API

```
public class Tour {
    public Tour()
    public Tour(Point a, Point b, Point c, Point d)
    public int size()
    public double length()
    public String toString()
    public void draw()
    public void insertNearest(Point p)
    public void insertSmallest(Point p)
```

 // creates an empty tour
 // creates the 4 -point tour
// $a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$ (for debugging)
// tests this class
public static void main(String[] args)
${ }^{2} \quad 3 \quad 0^{4}$
Point[]

Assignment Inputs and Goals

- You have to implement a class Tour . java
- You are provided with Point . java, the Node class, several test clients and sample datasets, to check whether your implementation is correct
- The assignment introduces you to linked lists
- Can you use a data type that is provided to you? see use of Point
- Can you use a private node type? see Node definition and use
- Can you traverse a list? see Tour . size(), Tour . length()
- What about when there are different base cases? Tour. toString()
- Can you modify a circular list? Tour . insert Nearest () and other

TSPVisualizer (1)

- Test client provided in the project files, which uses your Tour implementation, calling the following to color the outlines, before Tour . draw():

```
- StdDra|. setPenColor(StdDraw.RED);
```

- Can take a starting set of points; and outputs points in its diagram to the console
- Initially nearest neighbor heuristic and smallest increase heuristic appear similar
- The nearest neighbor heuristic does not always do what we intuitively want it to: It depends on the order in which points have been added, not proximity

TSPVisualizer (2)

Challenge for the Bored 1
Can you systematically build bad sequences of points for our nearest neighbor heuristic? Write a program to generate bad sequences?

Tips and Tricks

The Point API

```
public class Point {
    public Point(double x, double y) // creates the point (x, y)
    public double distanceTo(Point that) // returns the Euclidean distance between the two points
    public void draw()
    public void drawTo(Point that) // draws the line segment between the two points
    public String toString() // returns a string representation of this point
```

- No way to access the x or y coordinate of a Point class instance
- In Tour . length(), to measure perimeter of tour:
- Use Point.distanceTo()
- In Tour . toString(), to list coordinates of all points:
- Use Point.toString()
- In Tour. draw(), to draw the outline of the tour:

Challenge for the Bored 2

I can think of two ways to extract the coordinates anyway, a math-based and text-based method. Can you figure them out?

- Use Point.drawTo()

Circular Linked List

public static void main(String[] args) \{ // Or: Tour square = createSquareTour(0.6, 0.2); Tour square $=$ new Tour(new Point(0.2, 0.2),
new Point (0.2, 0.8),
new Point(0.8, 0.8),
new Point(0.8, 0.2));
square.draw();

Make Helper Functions for Testing

```
// Create a square tour of side alpha, shifted by beta
private static Tour createSquareTour(double alpha, double beta) {
    return new Tour(
            new Point(beta + 0.0, beta + 0.0),
            new Point(beta + 0.0, beta + 1.0 * alpha),
            new Point(beta + 1.0 * alpha, beta + 1.0 * alpha),
            new Point(beta + 1.0 * alpha, beta + 0.0)
    );
}
//
private static boolean testOne(double alpha) {
    Tour test = createSquareTour(alpha);
    boolean sizeTest = (test.size() = 4);
    boolean lengthTest = (Math.abs(test.length() - 4.0 * alpha) \leqslant 0.001);
    return sizeTest && lengthTest;
}
```

int NUM_TEST_REPETITIONS = 1000;
for (int i = 0; i < NUM_TEST_REPETITIONS; i++) \{
double alpha = StdRandom.uniform(0.5, 100.0);
if (!testOne(alpha))
StdOut.println("testOne failed, alpha = " + alpha);
\}

Any method that makes it easier to write more tests is a good helper method!

Helper Functions for Insertion

- Modularity is often very desirable: Part of the point of functions
- Helper functions can be useful in many situations
- To avoid duplicating the same logic in several places:

```
// Insert a new node containing point newPoint right after
// the node that is referenced by the parameter cursor
private void insertPointAfter(Node cursor, Point newPoint)
```

- To make the calling code clearer, by abstracting a complicated sequence of operations to a function

```
// Compute the increase in tour length that would result from
// inserting point newPoint after the node at cursor
private double computeIncrease(Node cursor, Point newPoint)
```


Edge-cases/Base cases?

- Correctly identifying [smallest possible number of] edge-case(s) for list operations, helps code complexity
- Using the do \{ ... \} while (...) construct allows you to writer shorter code
- Circular list vs. normal lists saves you a few edge cases...


```
public int traverseCircularList() {
    // <... some initialization...>
    if (head = null) return ...;
    Node x = head;
    do {
        // < ... do something with element x ...>
        x = x.next;
        } while (x \not= first);
        // < ... some more work ...>
    return ...;
}
```


Pseudo-Code for TSP Approximation

```
tour \leftarrow []
for i = 1 to N:
p \leftarrow pointsToInsert[i]
bestValueSoFar \leftarrow <default value>
bestCandidateSoFar \leftarrow null
for each point x on tour:
    if computeValue(x, p) < bestValueSoFar:
        bestValueSoFar \leftarrow computeValue(x, p)
        bestCandidateSoFar \leftarrow x
    insertPointAfter(bestCandidateSoFar, p)
```


Real-World Example: Additional Constraints

ORION: The algorithm proving that left isn't right

October 2016

[...] Left turns mean idling, which increases the time a route takes. Left turns mean going against traffic, which increases exposure to oncoming cars. Right turns are faster. Right turns save fuel.
Because most UPS managers have been UPS drivers, they have driven the routes and plotted on maps how to drive them with as many right-hand loops as possible. They knew right turns were the way to go, but that knowledge was in their heads.
"Before computers, engineering was about measurement and process," says Jack Levis, senior director of process management at UPS. "UPS has always believed in data, not intuition."
Eventually, UPS's technology caught up with experience. The result is ORION (or On-Road Integrated Optimization and Navigation). By optimizing delivery routes in regard to distance, fuel and time, ORION seeks to solve the Traveling Salesman Problem, which has stumped scientists for more than 200 years. [...]

- UPS routinely computes TSP tours
- Eliminating 1 mile, per driver, per day over one year can save up to \$50 million
- Typical optimization: Prefer right-turns over left-turns (essentially because they require less idling)

The Lin-Kernighan Heuristic

An Effective Heuristic Algorithm for the TravelingSalesman Problem

S. Lin and B. W. Kernighan

Bell Telephone Laboratories, Incorporated, Murray Hill, N.J. (Received October 15, 1971)

This paper discusses a highly effective heuristic procedure for generating optimum and near-optimum solutions for the symmetric traveling-salesman problem. The procedure is based on a general approach to heuristics that is believed to have wide applicability in combinatorial optimization problems. The procedure produces optimum solutions for all problems tested, 'classical' problems appearing in the literature, as well as randomly generated test problems, up to 110 cities. Run times grow approximately as n^{2}; in absolute terms, a typical 100 -city problem requires less than 25 seconds for one case (GE635), and about three minutes to obtain the optimum with above 95 per cent confidence.

Figure 1. A 2-Opt move: original tour on the left and resulting tour on the right.

Figure 2. Two possible 3-Opt moves: original tour on the left and resulting tours on the right.

Challenge for the Bored

How to circumvent an API to get the information you want/need?

```
private static double[] extractPointByText(Point p) {
    String s = p.toString();
    String x = "", y = "";
    int cursor = 1;
    // Extract first number
    while (s.charAt(cursor) #= ',') {
        x += s.charAt(cursor);
        cursor++;
    }
    // Skip whitespace
    while (s.charAt(cursor) = ' ' ||
        s.charAt(cursor) = ',')
        cursor++;
    // Extract second number
    while (s.charAt(cursor) #= ')') {
        y += s.charAt(cursor);
        cursor++;
    }
    return new double[] { Double.parseDouble(x),
                        Double.parseDouble(y) };
}
```

```
private static double[] extractPointByMath(Point p) {
```

private static double[] extractPointByMath(Point p) {
double hypotenuse = p.distanceTo(new Point(0, 0));
double hypotenuse = p.distanceTo(new Point(0, 0));
double other = p.distanceTo(new Point(hypotenuse, 0));
double other = p.distanceTo(new Point(hypotenuse, 0));
double angle = Math.toDegrees(
double angle = Math.toDegrees(
Math.acos((other / 2.0) / hypotenuse));
Math.acos((other / 2.0) / hypotenuse));
double otherAngle = 90.0 - (180.0 - 2 * angle);
double otherAngle = 90.0 - (180.0 - 2 * angle);
double x = Math.sin(Math.toRadians(otherAngle)) * hypotenuse;
double x = Math.sin(Math.toRadians(otherAngle)) * hypotenuse;
double y = Math.cos(Math.toRadians(otherAngle)) * hypotenuse;
double y = Math.cos(Math.toRadians(otherAngle)) * hypotenuse;
return new double[] { x, y };
return new double[] { x, y };
}

```
}
```


Analysis

My timings: Timing of a single random instance of size N with both heuristics

\mathbf{N}	lengthNearest	timeNearest	lengthSmallest	timeSmallest
500	18934	0.00	11168	0.00
$\mathbf{1 0 0 0}$	26775	0.01	15929	0.01
2000	37855	0.01	22281	0.01
4000	52117	0.04	31029	0.05
$\mathbf{8 0 0 0}$	74289	0.21	43780	0.27
$\mathbf{1 6 0 0 0}$	105392	1.27	62208	1.41
32000	149731	6.30	43.36	123992
64000	210791	297889	248.15	175256
$\mathbf{1 2 8 0 0 0}$			230.84	

We assume the performance is polynomial:

$$
f(N)=a N^{b}
$$

Thus we can use the doubling method:

$$
\frac{f(2 N)}{f(N)}=\frac{a(2 N)^{b}}{a N^{b}}
$$

With which we solve:

$$
\begin{aligned}
& b=\log _{2}\left(\frac{f(2 N)}{f(N)}\right) \\
& a=\frac{f(2 N)}{(2 N)^{b}}
\end{aligned}
$$

First experiment that last longer than 60 seconds

Creating and preparing a dataset

```
// Create set of N random points (borrowed from ISPTimer.java)
private static Point[] randomPointSet(int N) {
    double lo = 0.0, hi = 600.0;
    Point[] testSet = new Point[N];
    for (int i = 0; i < N; i++) {
            double x = StdRandom.uniform(lo, hi);
            double y = StdRandom.uniform(lo, hi);
            testSet[i] = new Point(x, y);
    }
    return testSet;
}
// Time both heuristics with a random instance of N points
private static String timeSingleBoth(int N) {
    Point[] testSet = randomPointSet(N);
    // <... do computations and measure with Stopwatch ...>
    return (N + "," +
                lengthNearest + "," +
        elapsedNearest + "," +
        lengthSmallest + "," +
        elapsedSmallest);
```


Better Estimates Through Averaging

For more accurate readings, must average timing across K different executions (with K different random sets of points)

f_{X}							
	A		B	C	D	E smallestAvgTime	F dbISmallest
1			K	nearestAvgTime	dbINearest		
2		500	10	$9.00 \mathrm{E}-04$		0.0017	
3		1000	10	0.0014	0.64	0.0032	0.91
4		2000	10	0.0073	2.38	0.0112	1.81
5		4000	10	0.0346	2.24	0.0475	2.08
6		8000	10	0.1942	2.49	0.2442	2.36
7		16000	10	1.174	2.6	1.2777	2.39
8		20000			2.39	6.5816	2.36
9					2.38	31.6238	2.26

Have fun!

I am sticking around to answer questions

