
Guitar Hero
Tips & Tricks

Simulate the plucking of a guitar string using
the Karplus–Strong algorithm, transforming

your computer into a musical instrument

Administrative Info

● Partners allowed! Choose a partner whose skill level is

close to your own

● See COS 126 website for guidelines
You are missing a

semi-colon!

Oh good catch!

Overview

● This week, we're learning about performance

analysis and getting a preview of data structures

● GOALS:

○ Physically-modeled sound: compute sound

waveform using a mathematical model of a

musical instrument

○ Object-oriented programming: more practice

with objects

○ Performance: efficient data structure that is

crucial for this application

Overview

● This week, we're learning about performance

analysis and getting a preview of data structures

● RingBuffer is your first classic data structure, a

queue

RingBuffer

Overview

● This week, we're learning about performance

analysis and getting a preview of data structures

● RingBuffer is your first classic data structure, a

queue

● Each GuitarString uses 1 RingBuffer object

GuitarString RingBuffer

Overview

● This week, we're learning about performance

analysis and getting a preview of data structures.

● RingBuffer is your first classic data structure, a

queue.

● Each GuitarString uses 1 RingBuffer object

● GuitarHero uses 37 GuitarString objects

GuitarString RingBufferGuitarString RingBuffer

Overview

● This week, we're learning about performance

analysis and getting a preview of data structures

● RingBuffer is your first classic data structure, a

queue

● Each GuitarString uses 1 RingBuffer object

● GuitarHero uses 37 GuitarStrings objects

GuitarString RingBufferGuitarString RingBufferGuitarString RingBuffer

Overview

● This week, we're learning about performance

analysis and getting a preview of data structures.

● RingBuffer is your first classic data structure, a

queue

● Each GuitarString uses 1 RingBuffer object

● GuitarHero uses 37 GuitarStrings objects

GuitarString RingBufferGuitarString RingBufferGuitarString RingBufferGuitarString RingBuffer

GuitarHero

Overview

● This week, we're learning about performance

analysis and getting a preview of data structures.

● RingBuffer is your first classic data structure, a

queue.

● Each GuitarString uses 1 RingBuffer object

● GuitarHero uses 37 GuitarString objects

GuitarString RingBufferGuitarString RingBufferGuitarString RingBufferGuitarString RingBufferGuitarString RingBufferGuitarString RingBufferGuitarString RingBufferGuitarString RingBuffer(Imagine 37
arrows here!)

GuitarHero

Overview

● This week, we're learning about performance

analysis and getting a preview of data structures.

● RingBuffer is your first classic data structure, a

queue.

● Each GuitarString uses 1 RingBuffer objects

● GuitarHero uses 37 GuitarStrings objects

GuitarString RingBufferGuitarString RingBufferGuitarString RingBufferGuitarString RingBufferGuitarString RingBufferGuitarString RingBufferGuitarString RingBufferGuitarString RingBuffer

Let's start here!

(Imagine 37
arrows here!)

RingBuffer

double rb[] = new double[4];

rb[0] rb[1] rb[2] rb[3]

? ? ? ?

RingBuffer buf = new RingBuffer(4);

size ?capacity ?

double rb[] = new double[4];

RingBuffer

double rb[] = new double[4];

rb[0] rb[1] rb[2] rb[3]

0.0 0.0 0.0 0.0

RingBuffer buf = new RingBuffer(4);

size 0capacity 4

double rb[] = new double[4];

RingBuffer

rb[0] rb[1] rb[2] rb[3]

0.0 0.0 0.0 0.0

0.0

0.00.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 0capacity 4

RingBuffer

0.0

0.00.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 0capacity 4 first 0 last 0

RingBuffer

0.0

0.00.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 0capacity 4 first 0 last 0

buf.enqueue(2.1);

RingBuffer

0.0

0.00.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 0capacity 4 first 0 last 0

buf.enqueue(2.1);

RingBuffer

2.1

0.00.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 0capacity 4 first 0 last 0

buf.enqueue(2.1);

RingBuffer

2.1

0.00.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 1capacity 4 first 0 last 1

buf.enqueue(2.1);

RingBuffer

2.1

0.00.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 1capacity 4 first 0 last 1

buf.enqueue(1.7);

RingBuffer

2.1

0.00.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 1capacity 4 first 0 last 1

buf.enqueue(1.7);

RingBuffer

2.1

1.70.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 2capacity 4 first 0 last 2

buf.enqueue(1.7);

RingBuffer

2.1

1.70.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 2capacity 4 first 0 last 2

double val = buf.dequeue();

RingBuffer

2.1

1.70.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 2capacity 4 first 0 last 2

double val = buf.dequeue();

RingBuffer

2.1

1.70.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 2capacity 4 first 0 last 2

double val = buf.dequeue();
val = ?

RingBuffer

2.1

1.70.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 1capacity 4 first 1 last 2

double val = buf.dequeue();
val = 2.1

RingBuffer

2.1

1.70.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 1capacity 4 first 1 last 2

val = buf.dequeue();
val = ?

RingBuffer

2.1

1.70.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 0capacity 4 first 2 last 2

val = buf.dequeue();
val = 1.7

RingBuffer

2.1

1.70.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 0capacity 4 first 2 last 2

val = buf.dequeue();
val = 1.7

RingBuffer

2.1

1.70.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 0capacity 4 first 2 last 2

val = buf.dequeue();
val = 1.7

Old valuesOld values

RingBuffer

2.1

1.70.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 0capacity 4 first 2 last 2

val = buf.dequeue();
val = ?

RingBuffer

2.1

1.70.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 0capacity 4 first 2 last 2

val = buf.dequeue();
val = ?

RingBuffer

2.1

1.70.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 0capacity 4 first 2 last 2

val = buf.dequeue();
val = ?

EXCEPTION!

RingBuffer

2.1

1.70.0

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 0capacity 4 first 2 last 2

buf.enqueue(6.2);

RingBuffer

2.1

1.76.2

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 1capacity 4 first 2 last 3

buf.enqueue(6.2);

RingBuffer

2.1

1.76.2

0.0
rb[0]

rb[1]rb[2]

rb[3]

size 1capacity 4 first 2 last 3

buf.enqueue(3.7);

RingBuffer

2.1

1.76.2

3.7
rb[0]

rb[1]rb[2]

rb[3]

size 2capacity 4 first 2 last 4

buf.enqueue(3.7);

RingBuffer

2.1

1.76.2

3.7
rb[0]

rb[1]rb[2]

rb[3]

size 2capacity 4 first 2 last ?

buf.enqueue(3.7);

RingBuffer

2.1

1.76.2

3.7
rb[0]

rb[1]rb[2]

rb[3]

size 2capacity 4 first 2 last 0

buf.enqueue(3.7);

WRAP AROUND!

Discussion

● RingBuffer - similar to LFSR, except you don't shift

all the elements down each time you insert a new

value

● What is the order of growth of LFSR's step()

method?

Discussion

● RingBuffer - similar to LFSR, except you don't shift

all the elements down each time you insert a new

value

● What is the order of growth of LFSR's step()

method?

○ ANSWER - linear (shift elements of array)

Discussion

● RingBuffer - similar to LFSR, except you don't shift

all the elements down each time you insert a new

value

● What is the order of growth of LFSR's step()

method?

○ ANSWER - linear (shift elements of array)

● What is the order of growth of RingBuffer’s

enqueue() and dequeue() methods?

Discussion

● RingBuffer - similar to LFSR, except you don't shift

all the elements down each time you insert a new

value

● What is the order of growth of LFSR's step()

method?

○ ANSWER - linear (shift elements of array)

● What is the order of growth of RingBuffer’s

enqueue() and dequeue() methods?

○ ANSWER - constant (shift elements of array)

○ Updating the RingBuffer’s 44100 times per

second!

RingBuffer Testing/Debugging

What does the following code do:

double value = 0.0;
RingBuffer buf = new RingBuffer(4);
for (int i = 0; i < 4; i++) buf.enqueue(i/10.0);
for (int i = 0; i < 3; i++) value = buf.dequeue();
StdOut.println(value);

RingBuffer Testing/Debugging
double value = 0.0;
RingBuffer buf = new RingBuffer(4);
for (int i = 0; i < 4; i++) buf.enqueue(i/10.0);
for (int i = 0; i < 3; i++) value = buf.dequeue();
StdOut.println(value);

?

??

?
rb[0]

rb[1]

rb[2]

rb[3]
size

capacity

first

lastrb[1]

GuitarString

Each GuitarString has one RingBuffer

GuitarString

Each GuitarString has one RingBuffer.

GuitarString has two constructors

 The job of every constructor is to initialize all
instance variables!

GuitarString

Each GuitarString has one RingBuffer

GuitarString has two constructors. The job of every
constructor is to initialize all instance variables!

Implement Karplus-Strong algorithm

GuitarString

Implement Karplus-Strong algorithm.

Takes random numbers and turns them into music!

GuitarString

Implement Karplus-Strong algorithm.

Takes random numbers and turns them into music!

GuitarString

Two constructors:

1. GuitarString(double frequency)

2. GuitarString(double[] init)

GuitarString

Two constructors:

1. GuitarString(double frequency)
"The first constructor creates a RingBuffer of the

desired capacity n (the sampling rate 44,100 divided
by the frequency, rounded up to the nearest integer),
and initializes it to represent a guitar string at rest by

enqueuing n zeros"

2. GuitarString(double[] init)

GuitarString

Two constructors:

1. GuitarString(double frequency)

2. GuitarString(double[] init)
"The second constructor creates a RingBuffer of
capacity equal to the length n of the array, and
initializes the contents of the ring buffer to the

corresponding values in the array. In this assignment,
this constructor's main purpose is to facilitate testing

and debugging"

GuitarString

Two constructors:

1. GuitarString(double frequency)

2. GuitarString(double[] init)

Did you initialize all your instance
variables in both constructors?

GuitarString

pluck() replaces all n items in a RingBuffer with n
random values between -0.5 and +0.5

GuitarString

pluck() replaces all n items in a RingBuffer with n
random values between -0.5 and +0.5

How many elements will be in your RingBuffer
… before calling pluck()?
… after calling pluck()?

GuitarString

pluck() replaces all n items in the ring buffer with n
random values between -0.5 and +0.5

How many elements will be in your RingBuffer
… before calling pluck()?
… after calling pluck()? Always n

GuitarString

pluck() replaces all n items in a RingBuffer with n
random values between -0.5 and +0.5

How many elements will be in your RingBuffer
… before calling pluck()?
… after calling pluck()?

How to replace n elements in a RingBuffer?

GuitarString

pluck() replaces all n items in a RingBuffer with n
random values between -0.5 and +0.5

How many elements will be in your RingBuffer
… before calling pluck()?
… after calling pluck()?

How to replace n elements in a RingBuffer?

GuitarString
tic() "delete the first sample from RingBuffer and
adds to the end of the RingBuffer the average of
the deleted sample and the first sample, scaled by

an energy decay factor of 0.996"

GuitarString
tic() "delete the first sample from RingBuffer and
adds to the end of the RingBuffer the average of
the deleted sample and the first sample, scaled by

an energy decay factor of 0.996"

sample() "return the value of the item at the front
of the RingBuffer"

GuitarString

main() write your own tests here. must call every
method and, if the method has a return value, should

use that value for something, like printing

The test cases you write in main() will improve your
understanding!

GuitarHero

● Model many simultaneously vibrating guitar strings

● Classic guitar has 6 strings and 19 frets

● Our digital guitar has 37 strings

● Create an array of GuitarString objects

● Apply law of superposition string i has frequency

440 x 2(i-24)/12

GuitarHero

Take GuitarHeroLite and add 35 GuitarStrings to it!

GuitarHero

Starts like this...

GuitarHero

Starts like this...

Do not make 37
GuitarString

variables! Use
an array

GuitarHero

Starts like this...

GuitarHero

Starts like this...

The formula for
this mapping is
is similar to this
- Be careful of
integer division!

GuitarHero

Now, the first part of the loop...

GuitarHero

Now, the first part of the loop...

37 if-statements
will lose significant

of points!

GuitarHero

Now, the first part of the loop...

Instead, use keyboard.indexOf()

37 if-statements
will lose significant

of points!

GuitarHero

String keyboard =
 "q2we4r5ty7u8i9op-[=zxdcfvgbnjmk,.;/' ";
...
keyboard.length(); // don’t hardwire 37!
keyboard.indexOf('q'); // 0
keyboard.indexOf('r'); // 5
keyboard.indexOf('+'); // -1

GuitarHero

Now, the first part of the loop...

Instead, use keyboard.indexOf()

What should you do if the user presses a key
that is not on the keyboard? _____ _

GuitarHero

Now, the first part of the loop...

Instead, use keyboard.indexOf()

What should you do if the user presses a key
that is not on the keyboard? Ignore it

GuitarHero

Last, handle the superposition correctly.

GuitarHero

Last, handle the superposition correctly.

Superposition
means add all 37
samples together

GuitarHero

Last, handle the superposition correctly.

Superposition
means add all 37
samples togetherWhen you calculate this sum in

a loop, don't forget to reset the
sum to 0 between iterations!

GuitarHero

Last, handle the superposition correctly.

Notice that, we play only once
after summing all the samples

GuitarHero

Last, handle the superposition correctly.

After we sampled each string,
we call tic() on each

GuitarString to get ready for
next iteration

GuitarHero
User Interface

GuitarHero
MIDI - Checklist

MIDI KEYBOARD CONTROLLER

MIDI KEYBOARD APP

GuitarHero

