
COS 126 Exam Review

•Exams overview
•Example programming exam
•Example written exam questions (part 1)

Exams tab on the booksite

 2

 
See Exams tab for full details and old exams.

• Read carefully before each exam.

• Policies are the contract between us and you.
Watch this space for details

Policies (written exam).
• Closed book/notes/computer.
• 1 page (one side) cheatsheet.
• [two sides for Exam 2.]

Things to remember about inclass exams

 3

We know that you don't have much time.

• Exams are 50 minutes.

• "One page" programming exams.

• Five-minute questions on written exams.

We have to grade the exams.

• 400+ exams.

• No open-ended questions.

• Fully prepared rubrics.

Exams are only part of the story.

Old exams are not completely reliable.

• Course offerings differ slightly.

• We have made mistakes in the past.

Written Exam Logistics

 4

The first exam is on Thursday Oct. 18.

You don't all fit in this room.

• Pay attention and know where to go.

• Arrive early.

• No calculator/phone/computer/headphones

Advice.

• Review lectures/reading.
• Try an old exam (untimed).
• Try another one (timed).
• Review a few more.

Example question: Input and output

Q. Do you understand basic ways of communicating with your programs ?

 5

Ex. (S2011 Q4) Give the results of invoking this program with the given commands.

public class Q4 
{
 public static void main(String[] args)  
 {
 int curr = StdIn.readInt();
 StdOut.print(curr + " ");
 int prev = curr;
 while (!StdIn.isEmpty()) 
 {
 curr = StdIn.readInt();
 StdOut.print((prev + curr) / 2 + " ");
 prev = curr;
 }
 StdOut.println();
 }
}

2

% more input.txt

2 4 6 8 10 12 8 2

% java Q4 < input.txt

2 2 4 6 8 10 10 7

% java Q4 < input.txt | java Q4

Note: It prints the first number, then the average of each number and its predecessor.

3 5 7 9 11 10 5

Example question: Functions

Q. Do you understand basic mechanisms for invoking functions ?

 6

Ex. (S2018 Q7) Give the contents of the array a[] after executing the given code.

public static int halve1(int x)  
{
 x = x / 2;
 return x; 
}

public static void halve2(int[] a) 
{
 for (int i = 0; i < a.length; i++) 
 {
 halve1(a[i]);
 a[i] = halve1(a[i]);
 }
}

int[] a = { 16, 32, 48, 64 };

halve2(a);

8 16 24 32

int[] a = { 16, 32, 48, 64 };

halve2(a);

halve2(a);

4 8 12 16

4 8 12 16

NOT

Example question: Functions

 7

Ex. (S2018 Q7) Give the contents of the array a[] after executing the given code.

public static void halve3(int[] a)  
{
 int n = a.length;
 int[] b = new int[n/2];
 for (int i = 0; i < n/2; i++)
 b[i] = a[i];
 a = b;
}

int[] a = { 16, 32, 48, 64 };

halve3(a);

halve3(a);

16 32 48 64

Example question: Recursion

Q. Can you figure out the effect of a simple recursive program (or two) ?

 8

Ex. (Fall 2017 Q5) Fill in the values returned by these mutually recursive functions:

public static int mystery1(int n) 
{
 if (n == 0) return 0;
 else return mystery2(n - 1);
}
public static int mystery2(int n) 
{
 if (n == 0) return 1;
 else return mystery1(n - 1);
}

n mystery1(n) mystery2(n)

0 0 1

1 1 0

2 0 1

3 1 0

4 0 1

5 1 0

Write one line of code that could replace the body of mystery(1). return n % 2;

Example question: Binary operations

 9

Q. Why is ~0 equal to -1 and not 1? (Fall 2014 Q1B)

A (wrong).
~ is "not"
0 is "false"
"not false" is “true"
"true" is 1

A (correct).
~ is BITWISE "not"
 0 is 00000000000000000000000000000000
~0 is 11111111111111111111111111111111
 11111111111111111111111111111111 is -1 (2s complement)

Example question: TOY/number representation

Q. (Fall 2013 Q8) Consider this sequence of TOY instructions:

 10

R[1] = 0001

R[7] = R[7] + R[1]

7 1 0 1

2 2 0 1

4 7 7 2

1 7 7 1

R[7] = R[7] ^ R[2]

R[2] = R[0] - R[1] sets R[2] to all 1s

sets R[7] to bitwise XOR of R[7] with all 1s

adds 1 to R[7]

to negate a 2s complement number: flip its bits and add 1

Q. What is the value of R[7] after this sequence if it was intially 0025 ?

Q. In English, what does sequence do to R[7] ? Negates it.

0000000000100101
1111111111011010
1111111111011011

FFDB

Example question: TOY

Q. Can you simulate the effect of a very simple TOY program?

 11

Ex. (Fall 2016 Q7) Suppose that you load the following into memory locations 10-17 of
TOY, set the PC to 10, and press RUN. Give the result in 01 when 00 is initially 0001.

10: 8A00 R[A] <- M[00]

11: 7101 R[1] <- 1

12: 221A R[2] <- R[1] - R[A]

13: D216 if (R[2] > 0) PC <- 16

14: 1111 R[1] <- R[1] + R[1]

15: C012 PC <- 12

16: 9101 M[01] <- R[1]

17: 0000 halt

PC R[A] R[1] R[2]

10 0001

11 0001 0001

12 0001 0001 0000

13 0001 0001 0000

14 0001 0002 0000

12 0001 0002 0001

13 0001 0002 0001

16 0001 0002 0001

17 0001 0002 0001

>0

Example question: TOY

Q. Can you simulate the effect of a simple TOY program?

 12

Ex. (Fall 2016 Q7) Suppose that you load the following into memory locations 10-17 of
TOY, set the PC to 10, and press RUN. Give the result in 01 when 00 is initially 0006.

10: 8A00 R[A] <- M[00]

11: 7101 R[1] <- 1

12: 221A R[2] <- R[1] - R[A]

13: D216 if (R[2] > 0) PC <- 16

14: 1111 R[1] <- R[1] + R[1]

15: C012 PC <- 12

16: 9101 M[01] <- R[1]

17: 0000 halt

PC R[1] R[2]

10

11 0001

12 0001 FFFA

13 0001 FFFA

14 0002 FFFA

12 0002 FFFE

13 0002 FFFE

14 0004 FFFE

PC R[1] R[2]

12 0004 FFFC

13 0004 FFFC

14 0008 FFFC

12 0008 FFF9

13 0008 FFF9

14 0010 FFF9

12 0010 0004

13 0010 0004

16 0010 0004

NOT
0016

0001−0006

>0

<0

Example question: TOY

Q. Can you reason about the effect of a simple TOY program?

 13

Ex. (Fall 2016 Q7) Suppose that you load the following into memory locations 10-17 of
TOY, set the PC to 10, and press RUN. Give the result in M[01] when M[00] is initially 1EAF.

10: 8A00 R[A] <- M[00]

11: 7101 R[1] <- 1

12: 221A R[2] <- R[1] - R[A]

13: D216 if (R[2] > 0) PC <- 16

14: 1111 R[1] <- R[1] + R[1]

15: C012 PC <- 12

16: 9101 M[01] <- R[1]

17: 0000 halt

1
2
4
8
10
20
40
80
100
…
2000

load limit from M[00]

x = 1

while (x <= limit)

{

 x = 2*x

}

store x to M[01]

Good luck!

 14

