
COS 126 Written Exam 1 Fall 2018

There are seven questions on this exam, each worth ten points. There is one question per lecture,
numbered corresponding to the lectures, not in order of difficulty. If a question seems difficult to
you, skip it and come back to it. You will have 50 minutes to complete the exam. This exam is
preprocessed by computer. If you use pencil (and eraser), write darkly.

Resources. You may reference your optional two-sided 8.5-by-11 handwritten "cheat sheet"
during this exam. You may not use the textbook, your notes, or any electronic devices. You may
not communicate with anyone except the course staff during this exam.

Discussing this exam. Due to travel for extracurriculars and sports, some of your peers will take
this exam later. Do not discuss its contents with anyone who has not taken it.

This page. Do not remove this exam from the exam room. Fill in this page now, but do not start
the exam until you are told.

“I pledge my honor that I have not violated the Honor Code during this examination.”

[copy the pledge here]

[signature]

Name

NetID

Precept

Exam Room

Q1a. Types and Casts.=mìí=íÜÉ=äÉííÉê=íç=äÉÑí=çÑ=É~ÅÜ=äáåÉ=íÜ~í=ÖáîÉë=íÜÉ=î~äìÉ=éêáåíÉÇ=Eçê=êÉéêÉëÉåíë=
íÜÉ=áåÇáÅ~íÉÇ=ÉêêçêFK=^=äÉííÉê=ã~ó=ÄÉ=ìëÉÇ=ãçêÉ=íÜ~å=çåÅÉ=E~åÇ=ëçãÉ=åçí=~í=~ääFK=

Q1b. Terminology.=mìí=íÜÉ=äÉííÉê=íç=äÉÑí=çÑ=É~ÅÜ=ÇÉÑáåáíáçå=íÜ~í=áÇÉåíáÑáÉë=íÜÉ=íÉêã=ÇÉÑáåÉÇK=kç=
äÉííÉê=ã~ó=ÄÉ=ìëÉÇ=ãçêÉ=íÜ~å=çåÅÉK=

StdOut.println(“4" * 4);

StdOut.println(1 + 63.0);

StdOut.println((int) 32.0 + 32);

StdOut.println(1 + 2 + 3 + "4");

StdOut.println(64 + "." + 0);

A 1234

B 64

C 4444

D 64.0

E 334

F 163.0

G
compile-time

error

H run-time
error

^=ëÉí=çÑ=î~äìÉë=~åÇ=~=ëÉí=çÑ=çéÉê~íáçåë=çå=íÜçëÉ=î~äìÉëK

^=éêçÖê~ããáåÖJä~åÖì~ÖÉ=êÉéêÉëÉåí~íáçå=çÑ=~=î~äìÉK

^=éêçÖê~ããáåÖJä~åÖì~ÖÉ=êÉéêÉëÉåí~íáçå=çÑ=~=íóéÉK

^=ëí~íÉãÉåí=íÜ~í=~ëëçÅá~íÉë=~=î~êá~ÄäÉ=ïáíÜ=~=íóéÉ

^=ëí~íÉãÉåí=íÜ~í=~ëëçÅá~íÉë=~=î~äìÉ=ïáíÜ=~=î~êá~ÄäÉ

A literal

B declaration

C î~êá~ÄäÉ

D data type

E ~ëëáÖåãÉåí

F algorithm

G identifier

H
none of the

above

Q2. Loops and conditionals. Consider the following Java code fragment:

 int count = 0;  
 int N = ______; // SEE BELOW  
 for (int i = 0; i < N; i++)  
 if (((i/10) % 2) == 1) count++;  
 StdOut.println(count);

A. (1 point). What value is printed when N is 5?

B. (1 point). What value is printed when N is 10?

C. (2 points). What value is printed when N is 20?

D. (2 points). What value is printed when N is 1000?

E. (2 points). What value is printed when N is 1024?

F. (2 points). What value is printed when N is 975?  

Q3. Arrays. 

A. (3 points) In the box below, write one line of Java code that creates a 3-by-3-by-3 (three-
dimensional) array named a of int values and initializes them each to the value 0. 

B. (7 points) Indicate whether each of the following statements about Java arrays are true or
false by writing T or F respectively in the box to its left. 

Creating a Java array takes time proportional to its length.

If a, b, and c are arrays of length N, the statement c = a + b is equivalent
to the statement for (i = 0; i < N; i++) c[i] = a[i] + b[i].

Once a one-dimensional array has been created and initialized, you can refer
to the first element in the array with the code a[0].

Java arrays enable programmers to mix different types of data in the same
data structure.

It is reasonable for a programmer to expect that the time taken to access an
element using its index is independent of the array length.

If a and b are arrays of the same length, then the code a = b copies each
element of b to the corresponding position in a.

The number of items in an array a is a.length -1.

Q4. I/O. Consider the following Java program, which has no purpose other than to test your
understanding of standard input and standard output:

public class Q4  
{  
 public static void main(String[] args)  
 {  
 while (!StdIn.isEmpty())  
 {  
 int N = StdIn.readInt();  
 int sum = 0;  
 for (int i = 0; i < N; i++)  
 if (!StdIn.isEmpty())  
 sum += StdIn.readInt();  
 StdOut.print(sum + " ");  
 }  
 StdOut.println();  
 }  
}

Suppose that the file dataQ4 contains "1 2 3 4 5 6 7 8 9"K In the box to the left of each
command, write the output that it produces. For brevity, we say "java" which you may read as
"java-introcs". If the command results in an error or produces no output, write NONE.

% java Q4 dataQ4

% java Q4 | dataQ4

% java Q4 < dataQ4

% java Q4 < dataQ4 | java Q4

% java Q4 < dataQ4 | java Q4 | java Q4

Q5. Functions. Our task is to develop a function for computing the absolute value of each of the
elements in a 1-dimensional array of int values. For example, for the array {1, -6, 2, -1}
the desired result is {1, 6, 2, 1}. The code below is a solution to this problem, with five
snippets of code missing. Your task is to identify the code needed to complete this program. We
explore two different design patterns.

public static =lkb= abs(int[] x)  
{  
 int N = x.length;  
 qtl 
 for (int i = 0; i < N; i++)  
 if (x[i] < 0)  
 =qeobb== 
 clro  
 cfsb  
}

A. (5 points) Suppose that the design is to modify the 
argument array to reflect the result. Using the table 
at right, fill in each box with the letter corresponding 
to the code that is needed to accomplish this.

 
B. (5 points) Suppose that the design is to return a new 
array that reflects the result. Again using the table 
at right, fill in each box with the letter corresponding 
to the code that is needed to accomplish this. 

lkb

qtl

qeobb

A return x;

B return z;

C x[i] = -x[i];

D int[] z;

E z[i] = -x[i];

F int[] z = new int[];

G new int[N]

H int[] z = new int[N];

I else z[i] = x[i];

J void

K int

L int[]

M x[i] = x[i];

N new int[]

O else z[i] = -x[i];

P åç=ÅçÇÉ=Ñçê=íÜáë=Äçñ

clro

cfsb

lkb

qtl

qeobb

clro

cfsb

Q6. Recursion. Consider the following recursive static method:

 static int f(int n)  
 {  
 if (n == 0) return 0;  
 if (n == 1) return 0;  
 if (n == 2) return 1;  
 return f(n-1) + f(n-2) - f(n-3);  
 }  

A. (1 point). What is the value of f(3) ?

B. (1 point). What is the value of f(4) ?

C. (1 point). What is the value of f(7) ?

D. (3 points). Including the first one, how many 
calls on f()=are made to compute f(7)?  
 

E. (2 points). What is the value of f(101) ?

F. (2 points). Write T in the box at right if you 
could compute the value of f(101) using this 
code in less than 10 seconds on your computer,  
otherwise write F. 

Q7. TOY. Consider the following TOY program:

Fill in the following table to give the value(s) printed on standard output for each given
sequence of values on standard input. If no output, write NONE.

10: 7100 R[1] <- 0000

11: 8FFF read R[F]

12: 9F15 M[15] <- R[F]

13: 82FF read R[2]

14: 1112 R[1] = R[1] + R[2]

15: C016 goto 16

16: 91FF write R[1]

17: 0 000 halt

0000 1112

1112 0000

1112 1112

C011 1112 1112 1112

C011 C011 1112 1112

 TOY REFERENCE CARD

INSTRUCTION FORMATS

 | | | ||
 Format RR: | opcode | d | s | t | (0-6, A-B)
 Format A: | opcode | d | addr | (7-9, C-F)

ARITHMETIC and LOGICAL operations
 1: add R[d] <- R[s] + R[t]
 2: subtract R[d] <- R[s] - R[t]
 3: and R[d] <- R[s] & R[t]
 4: xor R[d] <- R[s] ^ R[t]
 5: shift left R[d] <- R[s] << R[t]
 6: shift right R[d] <- R[s] >> R[t]

TRANSFER between registers and memory
 7: load address R[d] <- addr
 8: load R[d] <- M[addr]
 9: store M[addr] <- R[d]
 A: load indirect R[d] <- M[R[t]]
 B: store indirect M[R[t]] <- R[d]

CONTROL
 0: halt halt
 C: branch zero if (R[d] == 0) PC <- addr
 D: branch positive if (R[d] > 0) PC <- addr
 E: jump register PC <- R[d]
 F: jump and link R[d] <- PC; PC <- addr

Register 0 always reads 0.
Loads from M[FF] come from stdin.
Stores to M[FF] go to stdout.

16-bit registers (using two's complement arithmetic)
16-bit memory locations
 8-bit program counter

This page is provided as scratch paper. If you tear it out, write your name, NetID, and precept
below and return it inside your exam.

Name _______________________ NetID ____________________ Precept_______________

