Protocols

• precise rules that govern communication between two parties
• TCP/IP: the basic Internet protocols
• IP: Internet protocol (bottom level)
 – all packets shipped from network to network as IP packets
 – no guarantees on quality of service or reliability: "best effort"
 – each physical network has its own format for carrying IP packets
• TCP: transmission control protocol
 – creates a reliable 2-way data stream using IP
 errors are detected and corrected
 – most things we think of as "Internet" use TCP
• "application-level" protocols, mostly built from TCP
 – HTTP (web), SMTP (mail), SSH (secure login), FTP (file transfer), ...
• UDP: user datagram protocol
 – simple unreliable datagram protocol (errors not detected)
 – used in DNS, remote file systems, ...
Packets

- **packet:** a sequence of bytes carrying information
 - usually over a network connection

- **bytes have a specific sequence, format, organization**
 - usually as specified in a protocol

- **typical network packet includes**
 - source (where it comes from)
 - destination (where it goes to)
 - size or length information (how big is the data part)
 - miscellaneous information (type, version, info to detect errors, ...)
 - the data itself ("payload")

- **typical sizes range from**
 - a few bytes
 - 150-1500 (Ethernet packets)
 - 100-65000 (IP packets)
What's in an IP packet

- a "header" that contains
 - protocol version, type of packet, length of header, length of data
 - fragmentation info in case it was broken into pieces
 - time to live: maximum number of hops before packet is discarded
 each gateway decreases this by 1
 - source & destination addresses (32 bits for IPv4, 128 bits for IPv6)
 - checksum of header information
 redundant info to detect errors in header information only, not data itself
 - etc.; about 20-40 bytes in header

- actual data
 - up to 64 KB of payload
 - IPv4:
IP: Internet Protocol

- **IP provides an unreliable connectionless packet delivery service**
 - every packet has full source & destination addresses
 - every packet is independent of all others

- **IP packets are datagrams**
 - individually addressed packages, like postcards in the postal system
 - "connectionless"
 - stateless: no memory from one packet to next
 - each packet is independent of others, even if in sequence and going same place
 - unreliable: packets can be lost or duplicated ("best effort" delivery)
 - packets can be delivered out of order
 - contents can be wrong (though error rates are usually very low)
 - no speed control: packets can arrive too fast to be processed
 - limited size: long messages have to be split up and then reassembled

- higher level protocols use IP packets to carry information
- IP packets are carried on a wide variety of physical media
TCP: Transmission Control Protocol

- a reliable 2-way byte stream built with IP
- a TCP connection is established to a specific host
 - and a specific "port" at that host
- each port provides a specific service
 - SSH = 22, SMTP = 25, HTTP = 80, ...
- a message is broken into 1 or more segments
- each TCP segment has a header (src, dest, etc) + data
 - header includes checksum for error detection, and sequence number to
 preserve order and detect missing or duplicated packets
- each TCP segment is wrapped in an IP packet and sent
 - has to be positively acknowledged to ensure that it arrived safely
 otherwise, re-send it after a time interval
- TCP is the basis of most higher-level protocols
Higher level protocols

- SSH: secure login
- SMTP: mail transfer
- HTTP: hypertext transfer -> Web

Protocol layering:
- a single protocol can't do everything
- higher-level protocols build elaborate operations out of simpler ones
- each layer uses only the services of the one directly below
- and provides the services expected by the layer above
- all communication is between peer levels: layer N destination receives exactly the object sent by layer N source
Encapsulation

Each piece of data at one level is wrapped up with a header and sent as a packet at the next lower level. The lowest level is what moves across a specific network.

http://www.technologyuk.net/the_internet/
How information flows

- Client
 - App
 - TCP
 - IP
 - Physical layer (e.g., phone)

- Gateway
 - IP
 - Physical layer (e.g., fiber)

- Gateway
 - IP
 - Physical layer (e.g., Ethernet)

- Server
 - App
 - TCP
 - IP
How things are connected

• local nets connected to local Internet Service Provider (ISP)
• these in turn connect to regional ISPs
• and then to larger ones like UUNet, AT&T, Sprint, …
• traffic exchanged at Internet exchanges (IXP)
 – large and small, formal and informal, profit and non-profit

• bandwidth (bit-carrying capacity) of connections is usually higher for larger ISPs
 – cable, DSL: maybe 10-100 Mbps (you to your ISP)
 – optical fiber: 100 Mbps and up (large carriers)
Coping with bandwidth limits

- data flows no faster than the slowest link
- limits to how much data can pass per unit time
 - no guarantees about packet delivery
 - no guarantees about bandwidth, delay or quality of service
 - IP telephony is hard because voice traffic requires limited delay and jitter
 - video is somewhat easier but needs a lot more bandwidth
- caching
 - save previous data so it doesn't have to be retrieved again
- compression, encoding
 - to improve use of available bandwidth
 - don't send redundant or unnecessary information
 - text, code, etc., can be compressed and recreated exactly
 - music, pictures, movies are compressed with some information discarded
- home connectivity
 - DSL, cable
 - 1-4 Mbps
 - phone, wireless
 - 1-50 Mbps
 - fiber
 - 50 Mbps and up
Internet Ideas

- packets versus circuits
 - different models (mail vs phone)

- names and addresses
 - what is a computer called, how to find it

- routing
 - how to get from here to there

- protocols and standards
 - Internet works because of IP as common mechanism
 higher level protocols all use IP
 specific hardware technologies carry IP packets

- layering
 - divide system into layers
 each of which provides services to next higher level
 while calling on service of next lower level
 - a way to organize and control complexity, hide details
Internet technical issues:

• privacy & security are hard
 – data passes through shared unregulated dispersed media and sites scattered over the whole world
 – it's hard to control access & protect information along the way
 – many network technologies (e.g., Ethernet, wireless) use broadcast encryption necessary to maintain privacy
 – many mechanisms are not robust against intentional misuse
 – it's easy to lie about who you are

• service guarantees are hard
 – no assurance of reliable delivery, let alone of bandwidth, delay or jitter

• some resources are running low
 – IPv4 addresses are all assigned
 – IPv6 (the next generation) uses 128-bit addresses acceptance growing, by necessity

• but it has handled exponential growth amazingly well