
File systems, databases, cloud storage
•  file: a sequence of bytes stored on a computer

–  content is arbitrary (just bytes); any structure is imposed by the creator of
the file, not by the operating system

•  file system: software that provides hierarchical storage and
organization of files, usually on a single computer (or nearby)
–  a significant part of the operating system

•  database: an integrated collection of logically related records
–  data is organized and structured for efficient systematic access
–  may be distributed across lots of machines & geographically dispersed

•  database system: software that provides efficient access to
information in a database
–  not usually part of the operating system

•  cloud storage: the same thing, but on someone else's computers

File systems: managing stored information
•  logical structure: users and programs see a
 hierarchy of folders (or directories) and files

–  a folder contains references to folder and files
–  "root" folder ultimately leads to all others
–  a file is just a sequence of bytes

contents determined and interpreted by programs, not the operating system
–  a folder is a special file that contains names of other folders & files

plus other information like size, time of change, etc.
contents are completely controlled by the operating system

•  physical structure: disk drives operate in tracks, sectors, etc.
–  other storage devices (e.g., SSD) have other physical properties

•  the operating system converts between these two views
–  does whatever is necessary to maintain the file/folder illusion
–  hides physical details so that programs don't depend on them
–  presents a uniform interface to disparate physical media

•  the file system is the part of the operating system that does this
conversion

How the file system converts logical to physical
•  disk is physically organized into sectors, or blocks of bytes

–  each sector is a fixed number of bytes, like 512 or 1024 or …)
–  reading and writing always happens in sector-sized blocks

•  each file occupies an integral number of blocks
–  files never share a block
–  some space is wasted: a 1-byte file wastes all but 1 byte of the block

•  if a file is bigger than one block, it occupies several blocks
–  the blocks are not necessarily adjacent on the disk

•  need a way to keep track of the blocks that make up the file

•  this is usually done by a separate "file allocation table" that lists the
blocks that make up each file
–  this table is stored on disk too so it persists when machine is turned off
–  lots of ways to implement this

Converting logical to physical, continued
•  every block is part of some file, or reserved by operating system,

or unused

•  "file allocation table" keeps track of blocks
–  by (conceptually only) chaining/linking them together

first block of a file points to second, second points to third, etc.
last block doesn't point to a successor (because it doesn't have one)

–  or (much more common) by some kind of table or array
 that keeps track of related blocks

•  also keeps track of unused blocks
–  disk starts out with most blocks unused ("free")

some are reserved for file allocation table itself, etc.
–  as a file grows, blocks are removed from the unused list and attached to

the list for the file:
to grow a file, remove a block from the list of unused blocks
and add it to the blocks for the file

Converting logical to physical: directories
•  a directory / folder is a file

–  stored in the same file system
–  uses the same mechanisms

•  but it contains information about other files and directories

•  the directory entry for a file tells where to find the blocks
 IT DOES NOT CONTAIN THE DATA ITSELF

•  the directory entry also contains other info about the file
–  name (e.g., midterm.doc)
–  size in bytes, date/time of changes, access permissions
–  whether it's an ordinary file or a directory

•  the file system maintains the info in a directory
–  very important to keep directory info consistent
–  application programs can change it only indirectly / implicitly

What happens when you say "Save"?
•  make sure there's enough space (enough unused blocks)

–  don't want to run out while copying from RAM to disk
•  create a temporary file with no bytes in it
•  copy the bytes from RAM and/or existing file to temporary file:

while (there are still bytes to be copied) {
 get a free block from the unused list
 copy bytes to it until it's full or there are no more bytes to copy
 link it in to the temporary file
}

•  update the directory entry to point to the new file
•  move the previous blocks (of old version) to the unused list

–  or to recycle bin / trash

What happens when you remove a file?
•  move the blocks of the file to the unused list
•  set the directory entry so it doesn't refer to any block

–  set it to zero, maybe

•  recycle bin / trash
–  recycle bin or trash is just another directory
–  removing a file just puts the name, location info, etc., in that directory instead

•  "emptying the trash" moves blocks into unused list
–  removes entry from Recycle / Trash directory

•  why "removing" a file isn't enough
–  usually only changes a directory entry
–  often recoverable by simple guesses about directory entry contents
–  file contents are often still there even if directory entry is cleared

Network file systems
•  the file system doesn't have to be local

–  the data could be on some other computer

•  need software for accessing remote files across networks
–  user programs access files and folders as if they are on the local machine
–  operating system converts these into requests to ship information to/from

another machine across a network
•  there has to be a program on the other end to respond to

requests
–  "mapping a network drive" or "mounting your H: drive" sets up the

connections

•  subsequent reads and writes go through the network instead of
the local disk

Cloud storage
•  the file system doesn't have to be local

–  the data could be on some other computer

•  need software for accessing remote files across networks
–  user programs access files and folders as if they are on the local machine
–  operating system converts these into requests to ship information to/from

another machine across a network
•  there has to be a program on the other end to respond to

requests
–  connecting to Google Drive or Dropbox or iCloud or ... sets up the

connections

•  subsequent reads and writes go through the network instead of
the local disk

Cloud computing
•  put data on computers that are somewhere else

–  not on your laptop
–  access it via the Internet

•  do (most of) the actual computing on computers that are
 somewhere else

–  not on your laptop
–  but owned by someone else
–  use the Internet to connect to the programs and the data

•  Amazon Web Services, Google Cloud Platform, Microsoft Azure, ...
–  can rent processors, operating systems, data storage, ...
–  scales easily, easier to administer,

•  relies on virtual machines
–  gives users the appearance of having their own hardware and systems

Browser as operating system
•  a browser provides many of the services that an operating

system does
–  can use "the cloud" for storage and computation
–  programs mostly run in cloud; browser is an interface
–  email, social networks, games, Google docs (and similar), ...

•  how about a computer that only runs a browser?
–  Chromebook: runs Chrome OS (Linux-based operating system)
–  applications and data are in the cloud, not on computer itself
–  very little local storage and local apps

 "When a yacht is over 328 feet, it's
 so big that you lose the intimacy."
 (editor, The Yacht Report, 3/08)

