
Software systems, buzzwords, issues
•  operating systems

–  runs programs, controls the computer, stores information, communicates
•  applications ("apps")

–  programs that do things
•  cloud computing, virtual machines, ...

–  where boundaries become even less clear

•  intellectual property
–  copyrights, patents, licenses

•  interfaces, standards, antitrust, ...
–  agreements on how to communicate and inter-operate

•  open source software
–  freely available, non-proprietary

•  jurisdiction
–  where are the computers? where is the data? who has access to it?

Operating system
•  a program that controls the resources of a computer

–  interface between hardware and all other software
–  examples: DOS, Windows 3.0/3.1/95/98/NT/ME/2000/XP/Vista/7/8/10
 Unix/Linux, Mac OS X, iOS, Android, ...

•  runs other programs ("applications", your programs, ...)
•  manages information on disk (file system)
•  controls peripheral devices, communicates with outside world
•  keeps things from interfering with each other

•  provides a level of abstraction above the raw hardware
–  makes the hardware appear to provide higher-level services than it really

does
–  makes programming much easier

What an operating system does
•  manages CPUs, schedules and coordinates running programs

–  switches CPU among programs that are actually computing
–  suspends programs that are waiting for something (e.g., disk, network)
–  keeps individual programs from hogging resources

•  manages memory (RAM)
–  loads programs in memory so they can run
–  swaps them to disk and back if there isn’t enough RAM (virtual memory)
–  keeps separate programs from interfering with each other
–  and with the operating system itself (protection)

•  manages and coordinates input/output to devices
–  disks, display, keyboard, mouse, network, ...
–  keeps separate uses of shared devices from interfering with each other
–  provides uniform interface to disparate devices

•  manages files on disk (file system)
–  provides hierarchy of directories and files for storing information

History of general-purpose operating systems

•  1950's: signup sheets
•  1960's: batch operating systems

–  operators running batches of jobs
–  OS/360 (IBM)

•  1970's: time-sharing
–  simultaneous access for multiple users
–  Unix (Bell Labs; Ken Thompson & Dennis Ritchie)

•  1980's: personal computers, single user systems
–  DOS, Windows, MacOS, Unix

•  1990's: personal computers, PDA's, …
–  PalmOS, Windows CE, Unix / Linux

•  2000's: Windows, Unix/Linux, MacOSX (a Unix variant)
•  2010's: Apple vs. Google vs. Microsoft

–  iOS, Android, Chrome-OS, … (all Unix/Linux-based)
–  cloud computing

•  not all computers have general-purpose operating systems
–  "embedded systems": small, specialized, but increasingly general (often Unix/Linux)

Unix operating system
•  developed ~1971 at Bell Labs

–  by Ken Thompson and Dennis Ritchie
•  clean, elegant design

–  at least in the early days
•  efficient, robust, easy to adapt, fun

–  widely adopted in universities, spread from there
•  written in C, so easily ported to new machines

–  runs on everything (not just PC's)

•  influence
–  languages, tools, de facto standard environment
–  enabled workstation hardware business (e.g., Sun Microsystems)
–  supports a lot of Internet services and infrastructure

often Linux

Ken Thompson and Dennis Ritchie (circa 1972)

Linux
•  a version of Unix written from scratch

–  by Linus Torvalds, Finnish student (started 1991)

•  source code freely available (kernel.org)
–  large group of volunteers making contributions
–  anyone can modify it, fix bugs, add features
–  Torvalds approves, sets standard
–  commercial versions make money by packaging and support,
 not by selling the code itself

•  used by many major sites, including
–  Google, Amazon, Facebook, Twitter, YouTube, ABC, CBS, CNN, ...

To run programs, the operating system must
•  fetch program to be run (usually from disk)
•  load it into RAM

–  maybe only part, with more loaded as it runs (dynamic libraries)
•  transfer control to it
•  provide services to it while it runs

–  reading and writing info on disk
–  communications with other devices

•  regain control and recover resources when program is finished
•  protect itself from errant program behavior
•  share memory & other resources among multiple programs
 running "at the same time"

–  manage memory, disks, network, ...
–  protect programs from each other
–  manage allocation of CPUs among multiple activities

Memory management
•  what's in memory? over-simplified pictures:

•  reality is more complicated
–  pieces of programs are partly in RAM, partly on disk

can only execute instructions that are in RAM
•  memory protection:

–  making sure that one program can't damage another or the OS
•  virtual memory:

–  making it look like there is more RAM than there really is

Op sysOp sys my Word your Word

Op sys Word browser mail your prog

my browser yours

Unix:

Windows:

Virtual machines
•  running other OS's on top of an OS

–  e.g., VMWare, VirtualBox, Xen, HyperV, ...
•  system calls from applications to "guest" OS are intercepted
 by "host" OS

–  e.g., guest == Windows 10 or Linux, host == MacOSX
•  passed to guest OS, which handles them by converting into
 system calls to host OS
•  not the same as "dual boot"

Mac OSX

Mac app(s) Virtualbox (Mac app)

Windows

Win app Win app

