
Inside the CPU
•  how does the CPU work?

–  what operations can it perform?
–  how does it perform them? on what kind of data?
–  where are instructions and data stored?

•  some short, boring programs to illustrate the basics
•  a toy machine to try the programs

–  a program that simulates the toy machine
–  so we can run programs written for the toy machine

•  computer architecture: real machines
•  caching: making things seem faster than they are
•  how chips are made
•  Moore's Law
•  von Neumann architecture
•  Turing machines

A simple "toy" computer (a "paper" design)

•  repertoire ("instruction set"): a handful of instructions, including
–  GET a number from keyboard and put it into the accumulator
–  PRINT number that's in the accumulator (accumulator contents don't change)

–  STORE the number that's in the accumulator into a specific RAM location
 (accumulator doesn't change)
–  LOAD the number from a particular RAM location into the accumulator
 (original RAM contents don't change)
–  ADD the number from a particular RAM location to the accumulator value,
 put the result back in the accumulator (original RAM contents don't change)

•  each RAM location holds one number or one instruction
•  CPU has one "accumulator" for arithmetic and input & output

–  a place to store one value temporarily
•  execution: CPU operates by a simple cycle

–  FETCH: get the next instruction from RAM
–  DECODE: figure out what it does
–  EXECUTE: do the operation
–  go back to FETCH

•  programming: writing instructions to put into RAM and execute

A program to print a number

GET get a number from keyboard into accumulator
PRINT print the number that's in the accumulator
STOP

•  convert these instructions into numbers
•  put them into RAM starting at first location
•  tell CPU to start processing instructions at first location

•  CPU fetches GET, decodes it, executes it
•  CPU fetches PRINT, decodes it, executes it
•  CPU fetches STOP, decodes it, executes it

Looping and testing and branching
•  we need a way to re-use instructions
•  add a new instruction to CPU's repertoire:

–  GOTO take next instruction from a specified RAM location
 instead of just using next location

•  this lets us repeat a sequence of instructions indefinitely

•  how do we stop the repetition?
•  add another new instruction to CPU's repertoire:

–  IFZERO if accumulator value is zero, go to specified location
 instead of using next location

•  these two instructions let us write programs that repeat
instructions until a specified condition becomes true

•  the CPU can change the course of a computation according to
the results of previous computations

Assembly languages and assemblers
•  assembly language: instructions specific to a particular machine

–  X86 (PC) family; ARM (cellphones); Toy (COS 109), ...

•  assembler: a program that converts a program written in assembly
language into numbers for loading into RAM

•  handles clerical tasks
–  replaces instruction names (e.g., ADD) with corresponding numeric values
–  replaces labels (names for memory locations) with corresponding numeric

values: location "Start" becomes 1, "Show" becomes 6, etc.
–  loads initial values into specified locations ("Sum" set to 0)

•  each CPU architecture has its own instruction format and one
 (or more) assemblers

Real processors
•  multiple accumulators (called "registers")
•  many more instructions, though basically the same kinds

–  arithmetic of various kinds and sizes (e.g., 8, 16, 32, 64-bit integers):
add, subtract, etc., usually operating on registers

–  move data of various kinds and sizes
load a register from value stored in memory
store register value into memory

–  comparison, branching: select next instruction based on results of
computation

changes the normal sequential flow of instructions
normally CPU just steps through instructions in successive memory locations

–  control rest of computer
•  typical CPU repertoire: dozens to a few hundreds of instructions
•  instructions and data usually occupy multiple memory locations

–  typically 2 - 8 bytes
•  modern processors have multiple "cores" that are all CPUs
 on the same chip

Fabrication: making chips
•  grow layers of conducting and insulating materials on a thin
 wafer of very pure silicon
•  each layer has intricate pattern of connections

–  created by complex sequence of chemical and photographic processes
•  dice wafer into individual chips, put into packages

–  yield is less than 100%, especially in early stages
•  how does this make a computer?

–  when conductor on one layer crosses one on lower layer,
 voltage on upper layer controls current on lower layer
–  this creates a transistor that acts as off-on switch
 that can control what happens at another transistor

•  wire widths keep getting smaller: more components in given area
–  today ~0.01 micron = 10 nanometers

 1 micron == 1/1000 of a millimeter (human hair is about 100 microns)
–  eventually this will stop

Moore's Law (1965, Gordon Moore, founder & former CEO of Intel)

•  computing power (roughly, the number of transistors on a chip)
 doubles about every 18 months

–  and has done so since ~1961

•  consequences
–  cheaper, faster, smaller, less power use per unit
–  ubiquitous computers and computing

•  limits to growth
–  fabrication plants now cost $2-4B; most are outside US
–  line widths are nearing fundamental limits
–  complexity is increasing
–  processors don't run faster
–  speed of light limitations across chip area

•  maybe some other technology will come along
–  atomic level; quantum computing
–  optical
–  biological: DNA computing

Computer architecture
•  what instructions does the CPU provide?

–  CPU design involves complicated tradeoffs among functionality, speed,
complexity, programmability, power consumption, …

–  Intel and ARM are unrelated, totally incompatible
Intel: lot more instructions, many of which do complex operations

e.g., add two memory locations and store result in a third
ARM: fewer instructions that do simpler things, but faster

e.g., load, add, store to achieve same result
•  how is the CPU connected to the RAM and rest of machine?

–  memory is the real bottleneck; RAM is slow (25-50 nsec to fetch)
modern computers use a hierarchy of memories (caches) so that frequently used

information is accessible to CPU without going to memory
•  what tricks do designers play to make it go faster?

–  overlap fetch, decode, and execute so several instructions are in various
stages of completion (pipeline)

–  do several instructions in parallel
–  do instructions out of order to avoid waiting
–  multiple "cores" (CPUs) in one package to compute in parallel

•  speed comparisons are hard, not very meaningful

Caching: making things seem faster than they are

•  cache: a small very fast memory for recently-used information
–  loads a block of info around the requested info

•  CPU looks in the cache first, before looking in main memory
–  separate caches for instructions and data

•  CPU chip usually includes multiple levels of cache
–  faster caches are smaller

•  caching works because recently-used info is likely to be used
again soon
–  therefore more likely to be in the cache already

•  cache usually loads nearby information at the same time
–  nearby information is more likely to be used soon
–  therefore more likely to be in the cache when needed

•  this kind of caching is invisible to users
–  except that machine runs faster than it would without caching

Turing machines
•  in 1936, showed that a simple model of a computer
 is universal

–  now called a Turing machine
•  all computers have the same computational power

–  i.e., they can compute the same things
–  though they may vary enormously in speed, memory, etc.

•  equivalence proven / demonstrated by simulation
–  any machine can simulate any other
–  a "universal Turing machine" can simulate any other

Turing machine

•  see also
–  Turing Test
–  Turing Award
–  Enigma

Alan Turing *38

Fundamental ideas
•  programmable, general-purpose computers

–  simple instructions for arithmetic, moving data, comparison of values
–  select next instruction based on results
–  controls its own operation according to computed results

•  von Neumann architecture
–  change what it does by putting new instructions in memory
–  instructions & data stored in same memory, indistinguishable except by context

attributed to von Neumann, 1946 (and Charles Babbage, Analytical Engine, 1830's)
–  logical structure largely unchanged for 60+ years, evolving now
–  physical structures changing very rapidly

•  Turing machines
–  all computers have exactly the same logical power:
 they can compute exactly the same things; differ only in performance
–  one computer can simulate another computer

a program can simulate a computer
•  everything is ultimately represented in bits (binary numbers)

–  groups of bits represent larger entities: numbers of various sizes, letters in
various character sets, instructions, memory addresses

–  interpretation of bits depends on context
one person's instructions are another person's data

