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1. INTRODUCTION
Today, we have both the blessing and the curse of being

overloaded with information. Never before has text been
more important to how we communicate, or more easily
available. But massive text streams far outstrip anyone’s
ability to read. We need automated tools that can help
make sense of their thematic structure, and find strands of
meaning that connect documents, all without human super-
vision. Such methods can also help us organize and navigate
large text corpora. Popular tools for this task range from
Latent Semantic Analysis (LSA) [8] which uses standard lin-
ear algebra, to deep learning which relies on non-convex op-
timization. This paper concerns topic modeling which posits
a simple probabilistic model of how a document is generated.
We give a formal description of the generative model at the
end of the section, but next we will outline its important
features.

Topic modeling represents each document as a bag of words
whereby all notions of grammar and syntax are discarded,
and each document is associated with its vector of word
counts. The central assumption is that there is a fixed set
of topics — numbering, say, a couple hundred — that are
shared and recur in di↵erent proportions in each document.
For example, a news article about legislation related to re-
tirement accounts might be represented as a mixture of 0.7
of the topic politics and 0.3 of the topic personal finance.
Furthermore, each topic induces a distribution on words in
the vocabulary. Note that a word like account can occur in
several topics: it could refer to a financial product (a bank
account) or a story (a fictional account), but the probability
that it is assigned would likely vary across topics. Finally,
the model specifies that each document is generated by first
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Figure 1: Examples of topics automatically ex-
tracted from a collection of New York Times
articles. Each row contains words from one topic in
descending order by probability.

anthrax, o�cial, mail, letter, worker, attack

president, clinton, white house, bush, o�cial, bill clinton

father, family, elian, boy, court, miami

oil, prices, percent, million, market, united states

microsoft, company, computer, system, window, software

government, election, mexico, political, vicente fox, president

fight, mike tyson, round, right, million, champion

right, law, president, george bush, senate, john ashcroft

picking its topic proportions from some distribution, and
then sampling each word from the document-specific distri-
bution on words. In the above example, each word would
be picked independently from politics with probability 0.7
and from personal finance with probability 0.3. The goal in
topic modeling is, when given a large enough collection of
documents, to discover the underlying set of topics used to
generate them. Moreover, we want algorithms that are both
fast and accurate.

This generative model is a simplistic account of how doc-
uments are created. Nevertheless, for a wide range of ap-
plications in text analysis, methods based on this model do
indeed recover meaningful topics. We give an example of a
randomly chosen set of topics recovered by our algorithm,
when run on a collection of New York Times articles, in
Figure 1. These tools have also found many applications in
summarization and exploratory data analysis. In fact, the
models described above are not just limited to text analysis
and have been used to recover semantic structure in various
biological datasets, including fMRI images of brain activity.
Variants of this model have also been used in linguistic and
humanities applications. See [5] for a thorough survey.

Traditional methods for learning the parameters of a topic
model are based on maximizing a likelihood objective. Such
approaches are popular when learning the parameters of var-
ious other probabilistic models, too. However even in the
case of topic models with just two topics, this optimization
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Figure 2: Generative model used in topic modeling.

problem is NP -hard [4]. At best, the approaches used in
practice are known to converge to the true solution eventu-
ally but we know of no good guarantees on the running time
needed to fit the parameters up to some desired precision.
These gaps in our understanding are not only a theoretical
issue but also a practical one: the seemingly large running
times of these algorithms means that learning 1000 topics
from 20 million news articles requires a distributed algo-
rithm and 100 dedicated computers [1].

Recently, several groups of researchers have designed new
algorithms that have provable guarantees. These algorithms
run in times that scale as a fixed polynomial in the number
of documents and the inverse of the desired precision [4,
2]. Our primary focus is on the algorithm of Arora et al. [4]
which is based on a seemingly realistic assumption — termed
separability— about the structure of topics. The subsequent
work of Anandkumar et al. [2] removes this assumption,
but requires that the topics are essentially uncorrelated and
seems to be quite sensitive to violations of this assumption.
The contribution of the present article is to show that some
of these new theoretical algorithms can be adapted to yield
highly practical tools for topic modeling, that compete with
state of the art approximate likelihood approaches in terms
of the solution quality and run in a fraction of the time. At
the same time, the provable guarantees continue to hold for
our simplified algorithms.

The Model

Here we formally state the model we will be interested in.
We will rely on these definitions for much of the discussion
that follows. Let V denote the number of words in the vo-
cabulary. Let K denote the number of topics. And let M
denote the number of documents, and D denote their length.
(In general, one can allow documents to be of varying lengths
and one could even specify a distribution from which their
length is drawn). Each of the K topics is identified with a
distribution over words. We will represent these distribu-
tions as V -dimensional vectors A1, A2, ..., AK whose entries
are nonnegative and sum to one.
Each document d is generated by picking its topic pro-

portions Wd from a distribution ⌧ . The topic proportions
can also be viewed as a vector, but in K-dimensions where
the value in coordinate i represents the proportion of topic i
present in document d. Finally, each word is independently
sampled by choosing its topic zj 2 {1, 2, ..,K} according to
Wd, and then sampling it from that topic’s distribution over
words wj ⇠ Azj . We remark that this formulation is very
general and includes most widely used probabilistic topic
models, such as the Latent Dirichlet Allocation Model (LDA)
[7] where ⌧ is a Dirichlet distribution, as well as subsequent
extensions that allow topics to be positively or negatively
correlated such as the Correlated Topic Model (CTM) [6]
where ⌧ is a logistic Normal distribution. See also Figure 2.

1.1 Likelihood-based Methods
Here we expand upon some of the computational di�cul-

ties of working with likelihood-based methods. The tradi-
tional approach to fitting the parameters of topic models
is via maximum likelihood estimation, whereby we seek a
set of K topics, {A1, A2, ..., AK}, as well as a description of
the distribution ⌧ , that maximize the likelihood of the entire
collection having been generated by the model. This is a dif-
ficult optimization problem because the likelihood objective
is non-convex, with many local maxima. Optimizing non-
convex functions is notoriously di�cult, and standard local-
search based techniques like Expectation-Maximization [9]
or gradient ascent are only guaranteed to converge to a local
maximum, which may be much worse in terms of the objec-
tive value than the global optimum. Even worse, evaluat-
ing the likelihood function is itself di�cult due to the large
number of latent variables, namely the topic proportions
of each document, Wd, and the topic assignments of each
word, zj . To evaluate the likelihood of even a single docu-
ment requires integrating over all possible topic-proportions,
a high-dimensional integral with no closed form, as well as
summing over an exponential number of possible topic as-
signments for the words in the document.

Other previous works attempt to solve approximate ver-
sions of the maximum likelihood problem. For example,
the variational-EM approach [7, 14] maximizes an objec-
tive that lower bounds the likelihood objective, but cannot
guarantee that the solution is close to the optimum of the
likelihood objective itself. The Markov Chain Monte Carlo
(MCMC) approach [13] uses Markov chains tailored to gen-
erate samples from the posterior distribution of the param-
eters conditioned on the observed collection of documents,
but su↵ers from well-known drawbacks: It is di�cult to as-
sess convergence, and no polynomial bounds on its mixing
time are known in settings of interest. These approxima-
tions to the maximum likelihood objective are, in a sense,
necessary, since recent work has shown that even for just
two topics finding the maximum likelihood solution is NP -
hard [4]. Another reason that these methods tend to be
slow in practice, is that they contain an inner loop in which
they perform approximate inference, determining which top-
ics are likely present in each document in the collection. This
is also known to be NP -hard [25]. Thus, we seek a princi-
pled new approach that can circumvent both the hardness
of maximum likelihood estimation and inference.

1.2 The Method of Moments
The challenges of working with the maximum likelihood

estimator motivate us to investigate other consistent estima-
tors, ones that hopefully can be computed more e�ciently.
As we mentioned earlier, we build on recent algorithms [4,
2] that provably recover the parameters of a topic model
in polynomial time. These approaches are based on the
method of moments — which is originally due to Pearson
[23] — but has fallen out of favor in the statistics commu-
nity in large part because it seems to require more samples
than the likelihood-based approaches championed by Fisher.
However, in the modern age of big data, statistical e�ciency
is not as pressing an issue as computational e�ciency. With
this in mind, it seems time to revisit the method of moments.

The key concept behind the method of moments is to set
up a system of equations relating quantities that can be eas-
ily estimated from data (such as means or averages) and the
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Figure 3: The rows of Q are vectors in V -dimensions,
and their convex hull is a K-simplex whose ver-
tices are anchor rows. Here Qi = 1

2Q⇡(k) +
1
2Q⇡(k0)

and this implies that the posterior distribution
P (z1 = ⇤|w1 = i) assigns 1

2 to z1 = k and 1
2 to z1 = k0

and zero to every other topic.

parameters of model. One has to choose the set of equations
carefully so as to guarantee the identifiability of model pa-
rameters and to ensure that the system of equations can be
solved e�ciently. In recent years, the method of moments
has been used to give computationally e�cient algorithms
for a variety of fundamental statistical estimation problems
such as learning mixtures of Gaussians [15].

Let us describe the approach in the context of topic mod-
eling, working with second order moments. Let Q be a V ⇥V
matrix where the entryQj,j0 denotes the probability that the
first and second words in a randomly generated document
are word j and word j0 respectively. It turns out that this
matrix can be expressed as the product of three entry-wise
nonnegative matrices. Let R denote a K ⇥K matrix where
the entry Ri,i0 represents the probability that the first and
second word are sampled from topic i and topic i0 respec-
tively. Finally let A denote the V ⇥K matrix whose columns
are A1, A2, ..., AK . Then it can be shown that Q = ARAT .
Suppose for the moment that we could accurately estimate
the entries of Q.

A naive attempt to apply the method of moments runs
into its own computational di�culties when one attempts
to solve the system of non-linear equations. In particular,
we are faced with a matrix decomposition problem where
our goal is to express Q as a product of entry-wise non-
negative matrices as above. This is closely related to the
nonnegative matrix factorization problem and is known to
be NP -hard [26, 3]. The approach of Arora et al. [4] is to
make use of algorithms that solve nonnegative matrix fac-
torization under a certain assumption that seems natural in
the context of topic modeling. We describe this assumption
and its rationale next.

Separability

The guiding assumption behind the algorithm of Arora et al.
[4] is a notion called separability [11]. More precisely, this as-
sumption stipulates that topics can be reliably distinguished
from one another via anchor words — which, in the context
of topic models, are specialized words that are specific to
a single topic. For example, if the word 401k occurs in a
document then it is a strong indicator that the document is
at least partially about personal finance. Natural language
seems to contain many such unambiguous words. The con-

dition of separability requires that each topic contains at
least one (unknown) anchor word. We provide various expe-
riential evidence showing that models fit to real-world data
sets contain many anchor words.

Arora et al. [3] gave an algorithm for solving nonnegative
matrix factorization under the separability assumption. In
a subsequent paper, Arora et al. [4] showed that such an
algorithm can be used to provably learn the parameters of a
separable topic model. While theoretically important, these
algorithms (as stated) were far from practical: the runtime
is a large polynomial, and the algorithm itself is sensitive to
violations of the modeling assumptions, learning poor qual-
ity topics when run on real-world data collections. The cur-
rent paper addresses these issues, presenting a variant of the
above algorithm that achieves state of the art performance
and runs orders of magnitude faster than approximate likeli-
hood based approaches. Along the way, we also give a faster
algorithm for solving separable nonnegative matrix factor-
ization.

We remark that separability is not the only assumption
that allows for polynomial time recovery of topic-models.
Anandkumar et al. [2] give a provable algorithm for topic
modeling based on third-order moments and tensor decom-
position that does not require separability but instead re-
quires that topics are essentially uncorrelated. Although
standard topic models like LDA [7] assume this property,
there is strong evidence that real-world topics are depen-
dent [6, 19]. For example, the topics economics and politics
are more likely to co-occur than economics and cooking.

2. THE ANCHOR WORDS ALGORITHM

2.1 From Probability to Geometry
Separable topic models have various important probabilis-

tic and geometric properties. These properties will form the
foundation for our algorithm. We will work with simple
statistics measuring how often various pairs of words co-
occur in a document. Recall that the matrix Q denotes the
co-occurrence probabilities of pairs of words. In this section
it is more convenient to consider the conditional probabilities
Q̄, where Q̄i,j is the probability of the second word being j
conditioned on the first word being i. The matrix Q̄ is just
a row normalized version of Q whose rows sum up to 1.

It is useful to consider this data geometrically. We can
view the rows of Q̄ as points in V -dimensional space. More-
over we will call a row of Q̄ an anchor row if it corresponds
to an anchor word. A simplified illustration of anchor and
non-anchor rows is given in Figure 3. The key insight behind
our algorithm is the following fact. Recall that a vector u is
said to be in the convex hull of vectors v1, v2, . . . vd if it can
be written as u =

P
i �ivi where the �i’s are nonnegative

and sum to one.

Lemma 1. If the topic matrix is separable, then each row
of Q̄ is in the convex hull of the anchor rows.

This geometric property motivates our simple, greedy algo-
rithm for identifying the anchor words. First we sketch a
proof of this lemma through elementary manipulations on
various conditional probabilities.

Consider a randomly generated document, and let w1

and w2 be random variables that denote its first and sec-
ond words respectively. Furthermore let z1 and z2 denote



Algorithm 1. FindAnchors

1: Compute co-occurrences. Let Nd be the length of
document d, and Nd(i) be the number of occurrences
of word i in document d.

Q̂i,j =
1
M

X

d

2
Nd(Nd � 1)

Nd(i)Nd(j)

Q̂i,i =
1
M

X

d

2
Nd(Nd � 1)

(N2
d (i)�Nd(i))

2: Let ˆ̄Q be a row normalization of Q̂. Rows of ˆ̄Q sum up
to 1.

3: for k = 1 TO K do
4: Choose the row in ˆ̄Q furthest from the a�ne span

of the anchor rows chosen so far.
5: end for
6: Return the chosen anchor words

their latent topic assignments. We will think of the genera-
tive procedure as first picking Wd from ⌧ and then picking
z1, z2 2 [K] independently according to Wd. Once these
topic assignments are fixed, the words w1 and w2 are inde-
pendently sampled from Az

1

and Az
2

respectively. We will
use the notation ⇡(k) to denote an anchor word for topic k.
Then the definition of an anchor word gives us:

P (z1 = k0|w1 = ⇡(k)) =

(
1 k0 = k

0 else

This follows because when an anchor word is observed, there
is only one topic that could have generated it! Moreover
let Q̄i denote the ith row of Q̄. Then the jth coordinate
of Q̄i is P (w2 = j|w1 = i). We will use the shorthand
Q̄i = P (w2 = ⇤|w1 = i). It follows that

Q̄⇡(k) = P (w2 = ⇤|w1 = ⇡(k)) = P (w2 = ⇤|z1 = k)

And finally we can write

Q̄i =
X

k0

P (w2 = ⇤|w1 = i, z1 = k0)P (z1 = k0|w1 = i)

=
X

k0

P (w2 = ⇤|w1 = ⇡(k0))P (z1 = k0|w1 = i)

This formula explicitly represents Q̄i as a convex combi-
nation of the anchor rows, but moreover we see that the
convex combination is given by the conditional probabilities
P (z1 = k0|w1 = i) of which topic generated word w1 = i.
Thus our strategy is to find the anchor rows, and then solve
a low-dimensional convex program to represent every non-
anchor row as a convex combination of the anchor rows to
find P (z1 = k0|w1 = i). From there, we can use Bayes’ rule
to compute P (w1 = i|z1 = k0) which are exactly the param-
eters (except for the hyperparameters) of our topic model.

2.2 Finding the Anchor Words
We give a simple, greedy algorithm called FindAnchors

that provably finds the K anchor words (one for each topic)

given the empirical estimate ˆ̄Q of the matrix Q̄ defined in
the previous subsection. We will analyze this algorithm in

the noiseless setting where ˆ̄Q = Q̄, but what is important
about this algorithm is its behavior in the presence of noise.
In that setting, it can be shown that FindAnchors recovers

!!1.!

4.!3.!

2.!

Figure 4: The first three steps of FindAnchors consist
of finding a starting point furthest from the origin,
finding the furthest point from the initial point,
and finding the furthest point from the line defined
by the first two points.

near anchor words — i.e. words whose row in ˆ̄Q is close
in `1 distance to some anchor word. We need these latter
types of guarantees to quantify how much data we need to
get estimates that are provable close to the true parameters
of the topic model.

The algorithm builds up a set of anchor words greedily,
and starts by choosing the row farthest from the origin.
Then it iteratively add points that maximize distance from
the a�ne span of the previously collected points. This pro-
cedure can also be seen as iteratively growing the simplex,
adding vertices that greedily maximize the enclosed volume.
While the general problem of choosing K rows of a matrix
ˆ̄Q to maximize the enclosed volume is NP -hard, it becomes
easy when the points are known to lie in a simplex and
the vertices of the simplex are themselves among the input
points.

For the purpose of improving the noise tolerance, we add a
second “clean up” stage that iteratively removes each vertex
and adds back the point farthest from the span of the re-
maining vertices. While this additional round of cleanup has
been previously suggested as a heuristic to improve quality,
in the full version of our paper we show that it also improves
the theoretical guarantees of the algorithm.

Finally, the running time of this algorithm can be further
improved by using random projection. Randomly project-
ing a collection of vectors in high dimensions onto a random
low-dimensional subspace is well-known to approximately
preserve the pairwise distance between each pair of vectors.
And since our algorithm iteratively finding the farthest point
from a subspace, its behavior is preserved after a random
projection. But this refinement of the algorithm allows it
to work with low-dimensional points, and improves its e�-
ciency. The final running time is eO(V 2 + V K/✏2).

3. TOPIC RECOVERY
Here we give an algorithm called Recover-Topics (L2)

that provably recovers the parameters of the topic model



Algorithm 2. Recover-Topics (L2)

1: for i = 1 TO V do
2: Project row i of ˆ̄Q into the convex hull of the anchor

rows, and interpret the resulting convex combination as
p(z1 = ⇤|w1 = i)

3: end for
4: Solve for A using Bayes’ rule, as given in Equation (1)
5: Solve the linear system Q̂ = ARAT for R
6: Return A,R

when given the anchor words. The algorithm exploits the
same probabilistic and geometric properties of separable topic
models, which we described earlier. Recall that every row of
ˆ̄Q can be (approximately) written as a convex combination
of the anchor rows. Moreover, the mixing weights are very
close to the probabilities P (w1 = i|z1 = k).

For each non-anchor row, our algorithm finds the point
in the convex hull of the anchor rows that is closest (in Eu-
clidean distance). This is a minimization problem that can
be solved e↵ectively using the Exponentiated Gradient algo-
rithm [16]. The resulting point can be expressed as a convex
combination of the anchor rows, which yields the conditional
probabilities P (w1 = i|z1 = k0) as descried earlier. These
values di↵er slightly from what we want. Ultimately, we can
recover the entries of A through Bayes’ rule

P (w1 = i|z1 = k) =
P (z1 = k|w1 = i)P (w1 = i)P
i0 P (z1 = k|w1 = i0)P (w1 = i0)

(1)

Recall that Q = ARAT , and since A has full column rank
(because it is separable), we can solve for R by solving this
linear system. Furthermore, it turns out that in the spe-
cial case of the LDA model, we can additionally recover
the Dirichlet hyperparameters directly from R. We defer
the details to the full version of our paper. Finally, we re-
mark that in our algorithm, when we find the closest point
in Euclidean distance this step can be “kernelized”, making
the running time of each iteration of exponentiated gradient
independent of the vocabulary size, V . We can solve the
resulting minimization problem with a tolerance of ✏2 re-
quires K logK/✏2 iterations of the Exponentiated Gradient
[16] algorithm. The running time of Recover-Topics (L2)

is eO(V 2K+V K3/✏2) and the for-loop which constitutes the
main computational bottleneck can be trivially parallelized.

Recall that in implementing Bayes’ rule, we compute for
k 2 [K], the denominator

P
i0 p(z1 = k|w1 = i0)p(w1 = i0) =

p(zk) (this is done implicitly when normalizing the columns
of A0 in Algorithm 2), which gives us, up to a constant scal-
ing, the Dirichlet hyperparameters. This scaling constant
can be recovered from the R matrix as described in [4], but
in practice we find it better to choose this single parameter
using a grid search to maximize the likelihood of the data.

3.1 Theoretical Guarantees
Here we state rigorous guarantees on the sample com-

plexity and running time of our overall algorithm. We defer
the guarantees for FindAnchors and Recover-Topics (L2)
themselves to later in this section. When we are given a
finite set of samples, our empirical statistics — which we

denote by ˆ̄Q — will be a good, but imperfect approximation
to Q̄. In order to bound how many samples we need to ob-
tain some target accuracy in recovering the true parameters

of the topic model, we need to track the various sources of
error through our algorithm.

Moreover, we need that certain parameters are bounded in
reasonable ranges to guarantee that the inverse problem we
are trying to solve is well-posed. Recall that the existence
of anchors implies that we are trying to solve a separable
non-negative matrix factorization problem. We characterize
the separability of the problem as follows:

Definition 1. The word-topic matrix A is p-separable
for p > 0 if for each topic k, there is some word i such
that Ai,k � p and Ai,k0 = 0 for k0 6= k.

Thus, not only should each topic have an anchor word
but it should also have one that has non-negligible proba-
bility. We will require a lower bound on p, and the running
time and sample complexity of our algorithm will depend
polynomially on 1/p. We will also need a second measure
� that we will use to denote the smallest singular value of
R. When � is too small, the problem of recovering A and
R from Q = ARAT becomes unstable. Note that this mea-
sure also implies that no topic can have very low probability
since for any topic i, it can be shown that �  P (z1 = k).
When the problem is well-behaved with respect to these two
measures, our algorithm achieves the following guarantee:

Theorem 1. There is a polynomial time algorithm that
learns the parameters of a topic model if the number of doc-
uments is at least

M = max

⇢
O

✓
log V ·K6

✏2p6�6D

◆
, O

✓
logK ·K4

�4

◆�
,

where p and � are the two non-degeneracy measures defined
above and D � 2 is the length of the shortest document. The
algorithm learns the word-topic matrix A and the topic-topic
covariance matrix R up to additive error ✏.

To prove this theorem, we show that the FindAnchors

algorithm successfully recovers near-anchor words, and the
Recover-Topics (L2) algorithm accurately estimates the de-
sired parameters given near-anchor words. Before stating
the guarantee for FindAnchors algorithm, we first introduce
the following notion of ↵-covering. We will say

Let {v1, v2, ..., vK} and {v01, v02..., v0K} be two sets of points.
We say that these sets of points ↵-cover each other

Definition 2. We say that a set of points {v01, v02..., v0K}
↵-covers another set of points {v1, v2, ..., vK}, if when repre-

senting each v0i as a convex combination v =
PK

k0=1 ck0vk0 ,
we have that ci � 1� ↵.

Clearly, we would like the anchor points to be ↵-covered
by the set of near-anchors found by FindAnchors algorithm.

Let � be the largest perturbation between the rows of ˆ̄Q and

Q̄, maxi || ˆ̄Qi�Q̄i||  �. Lemma 2 connects the indices found
by FindAnchors and the true anchors.

Lemma 2. If � < (�p)3/20K, then FindAnchors will out-
put a set of rows that O(�/�p)-covers the true anchor rows.

Next we show the Recover-Topics algorithm is robust to
perturbations in the vertices and the internal points, making
it possible to bound the error in the reconstruction coe�-
cients in Lemma 3.



Lemma 3. When Recover-Topics (L2) is provided with
rows which O(�/�p)-cover the true anchor rows, the element-
wise error on the returned matrix A is at most O(�K/�3p2).

Combining these two lemmas, and standard concentration
bounds for the empirical correlation matrix Q̄, we get the
guarantees in the main Theorem 1.

4. EXPERIMENTAL RESULTS
The proposed method in this article, anchor finding fol-

lowed by convex optimization for topic recovery, is both
faster than standard probabilistic approaches and more ro-
bust to violations of model assumptions than previous prov-
able approaches. We compare two parameter recovery meth-
ods and a standard, probabilistically motivated algorithm.
The first method is a simple matrix inversion presented in
[4], which we call Recover. This inversion method is the-
oretically optimal, but fails in practice. The second is the
constrained recovery method using a squared `2 loss, which
we call RecoverL2 as shorthand for Recover-Topics (L2).
As a comparison, we also consider a state-of-the-art Gibbs
sampling implementation [20]. We would like an algorithm
to be fast, accurate, and robust to noisy data. We find that
the anchor-based algorithm is substantially faster than the
standard algorithm, especially for large corpora. To evalu-
ate accuracy we test the algorithms on semi-synthetic data
(with known topic distributions) and real documents. In
addition, we measure the e↵ect of di↵erent sources of error
and model mismatch.

4.1 Methodology
We train models on two synthetic data sets to evaluate

performance when model assumptions are correct, and on
real documents to evaluate real-world performance. To en-
sure that synthetic documents resemble the dimensionality
and sparsity characteristics of real data, we generate semi-
synthetic corpora. For each real corpus, we train a model
using Gibbs sampling and then generate new documents us-
ing the parameters of that model (these parameters are not
guaranteed to be separable; we found that about 80% of
topics fitted by Gibbs sampling had anchor words).

We use two real-world data sets, a large corpus of New
York Times articles (295k documents, vocabulary size 15k,
mean document length 298) and a small corpus of NIPS ab-
stracts (1100 documents, vocabulary size 2500, mean length
68). Vocabularies were pruned with document frequency
cuto↵s. We generate semi-synthetic corpora of various sizes
from models trained with K = 100 from NY Times and
NIPS, with document lengths set to 300 and 70, respec-
tively, and with document-topic distributions drawn from a
Dirichlet with symmetric hyperparameters 0.03.

For the first stage of the algorithm, anchor word recovery,
we use the FindAnchors algorithm in all cases. The origi-
nal linear programming-based anchor word finding method
presented with Recover in [4] is too slow to be comparable.
For Gibbs sampling we obtain the word-topic distributions
by averaging over 10 saved states, each separated by 100
iterations, after 1000 burn-in iterations.

We use a variety of metrics to evaluate the learned mod-
els. For the semi-synthetic corpora, we compute the recon-
struction error between the true word-topic distributions
and the learned distributions. In particular, given a learned
matrix Â and the true matrix A, we use bipartite matching
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Figure 5: Training time on synthetic NIPS documents.

to align topics, and then evaluate the `1 distance between
each pair of topics. When true parameters are not avail-
able, a standard evaluation for topic models is to compute
held-out probability, the probability of previously unseen
documents under the learned model.

Topic models are useful because they provide interpretable
latent dimensions. We can evaluate the semantic quality
of individual topics using a metric called Coherence [21].
This metric has been shown to correlate well with human
judgments of topic quality. If we perfectly reconstruct top-
ics, all the high-probability words in a topic should co-occur
frequently, otherwise, the model may be mixing unrelated
concepts. Given a set of words W, coherence is

Coherence(W) =
X

w
1

,w
2

2W

log
D(w1, w2) + ✏

D(w2)
, (2)

where D(w) and D(w1, w2) are the number of documents
with at least one instance of w, and of w1 and w2, respec-
tively. We set ✏ = 0.01 to avoid taking the log of zero for
words that never co-occur. Coherence measures the quality
of individual topics, but does not measure redundancy, so we
measure inter-topic similarity. For each topic, we gather
the set of the N most probable words. We then count how
many of those words do not appear in any other topic’s set of
N most probable words. For these experiments we use N =
20. Some overlap is expected due to semantic ambiguity, but
lower numbers of unique words indicate less useful models.

4.2 Efficiency
Both the Recover and RecoverL2 algorithms, in Python,

are faster than a heavily optimized Gibbs sampling imple-
mentation in Java. Fig. 5 shows the time to train models
on synthetic corpora on a single machine. Gibbs sampling is
linear in the corpus size. RecoverL2 is also linear (⇢ = 0.79),
but only varies from 33 to 50 seconds. EstimatingQ is linear,
but takes only 7 seconds for the largest corpus. FindAnchors
takes less than 6 seconds for all corpora.

4.3 Semi-synthetic documents
The new algorithms have good `1 reconstruction error on

semi-synthetic documents, especially for larger corpora. Re-
sults for semi-synthetic corpora drawn from topics trained
on NY Times articles are shown in Fig. 6 (top) for cor-
pus sizes ranging from 50k to 2M synthetic documents. In
addition, we report results for the Recover and RecoverL2

algorithms on“infinite data,” that is, the true Q matrix from
the model used to generate the documents. Error bars show
variation between topics. Recover performs poorly in all but
the noiseless, infinite data setting. Gibbs sampling has the
lowest `1 on smaller corpora. However, for the larger cor-
pora the new RecoverL2 algorithm have the lowest `1 error
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Figure 6: `1 error for learning semi-synthetic LDA
models with K = 100 topics (top: based on NY
Times, bottom: based on NIPS abstracts). The
horizontal lines indicate the `1 error of K uniform
distributions.

and smaller variance (running sampling longer may reduce
MCMC error further). Results for semi-synthetic corpora
drawn from NIPS topics are shown in Fig. 6 (bottom), and
are similar.

E↵ect of separability. Notice that in Fig. 6, Recover
does not achieve zero `1 error even with noiseless “infinite”
data. Here we show that this is due to lack of separabil-
ity, and that the new recovery algorithms are more robust
to violations of the separability assumption. In our semi-
synthetic corpora, documents are generated from an LDA
model, but the topic-word distributions are learned from
data and may not satisfy the anchor words assumption. We
now add a synthetic anchor word to each topic that is, by
construction, unique to that topic. We assign the synthetic
anchor word a probability equal to the most probable word
in the original topic. This causes the distribution to sum
to greater than 1.0, so we renormalize. Results are shown
in Fig. 7. The `1 error goes to zero for Recover, and close
to zero for RecoverL2 (not zero because we do not solve to
perfect optimality).

E↵ect of correlation. The theoretical guarantees of the
new algorithms apply even if topics are correlated. To test
the empirical performance in the presence of correlation, we
generated new synthetic corpora from the same K = 100
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Figure 7: When we add artificial anchor words be-
fore generating synthetic documents, `1 error goes
to zero for Recover and close to zero for RecoverL2.
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Figure 8: `1 error increases as we increase topic cor-
relation (top: ⇢ = 0.05, bottom: ⇢ = 0.1). Based on
the NY Times semi-synthetic model with 100 topics.

model trained on NY Times articles. Instead of a symmet-
ric Dirichlet distribution, we use a logistic Normal distribu-
tion with a block-structured covariance matrix. We parti-
tion topics into 10 groups. For each pair of topics in a group,
we add a non-zero o↵-diagonal element (⇢) to the covariance
matrix. This block structure is not necessarily realistic, but
shows the e↵ect of correlation. Results for ⇢ = 0.05 and 0.1
are shown in Fig. 8. Recover performs much worse with cor-
related topics than with LDA-generated corpora (c.f. Fig.
6). The other three algorithms, especially Gibbs sampling,
are more robust to correlation. Performance consistently de-
grades as correlation increases. For the recovery algorithms
this is due to a decrease in �, the condition number of the
R matrix. With infinite data, `1 error is equal to the `1 er-
ror in the uncorrelated synthetic corpus (non-zero because
of violations of the separability assumption).

4.4 Real documents
The new algorithms produce comparable quantitative and

qualitative results on real data. Fig. 9 shows three metrics
for both corpora. Error bars show the distribution of log
probabilities across held-out documents (top panel) and co-
herence and unique words across topics (center and bottom
panels). Held-out sets are 230 documents for NIPS and 59k
for NY Times. For the small NIPS corpus we average over 5
non-overlapping train/test splits. The matrix inversion step
in Recover fails for the NIPS corpus so we modify the pro-
cedure to use pseudoinverse. This modification is described
in the supplementary materials. In both corpora, Recover
produces noticeably worse held-out log probability per to-
ken than the other algorithms. Gibbs sampling produces the
best average held-out probability (p < 0.0001 under a paired
t-test), but the di↵erence is within the range of variability
between documents. We tried several methods for estimat-
ing hyperparameters, but the observed di↵erences did not
change the relative performance of algorithms. Gibbs sam-
pling has worse coherence than the other algorithms, but
produces more unique words per topic. These patterns are
consistent with semi-synthetic results for similarly sized cor-
pora (details are in supplementary material).
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Figure 9: Held-out probability (per token) is similar
for RecoverL2 and Gibbs sampling. RecoverL2 has
better coherence, but fewer unique terms in the
top N = 20 words than Gibbs. (Up is better for all
three metrics.)

For each NY Times topic learned by RecoverL2 we find
the closest Gibbs topic by `1 distance. The closest, median,
and farthest topic pairs are shown in Table 1. We observe
that when there is a di↵erence, recover-based topics tend to
have more specific words (Anaheim Angels vs. pitch).

Table 1: Example topic pairs from NY Times
(closest `1), anchor words in bold. The UCI NY
Times corpus includes named-entity annotations,
indicated by the zzz prefix. All 100 topics are shown
in the supplementary material.

RecoverL2 run inning game hit season zzz anaheim angel

Gibbs run inning hit game ball pitch

RecoverL2 father family zzz elian boy court zzz miami

Gibbs zzz cuba zzz miami cuban zzz elian boy protest

RecoverL2 file sport read internet email zzz los angeles

Gibbs web site com www mail zzz internet

5. CONCLUDING REMARKS
Here we have shown that algorithms based on the sepa-

rability assumption are highly practical and produce topic
models of quality comparable to likelihood-based methods
that use Gibbs sampling, while running in a fraction of
the time. Moreover, these algorithms are particularly well-
suited to parallel implementations, since each of the major
steps — with the exception of finding the anchor words —
can be trivially parallelized. Our algorithms inherit provable
guarantees from earlier approaches [4] in the sense that given
samples from a topic model, the estimates provably converge
to the true parameters at an inverse polynomial rate. How-
ever an important question going forward is to theoretically
explain why these algorithms appear to be (somewhat) ro-
bust to model misspecification. In our experiments, we fit
a topic model to real data and the resulting topic model is

not separable, but merely close to being separable. Nev-
ertheless, our algorithms recover high quality topics in this
setting too. Likelihood based methods are known to be well-
behaved when the model is misspecified, and ideally one
should be able to design provable algorithms that not only
have good running time and sample complexity, but can also
tolerate a realistic amount of noise.

Since its publication, our algorithms have been extended
in a number of directions. Roberts et al. [24] consider appli-
cations in the social sciences and find that using an anchor-
based model as an initialization for a likelihood-based algo-
rithm reduces variability and improves model fit. Nguyen
et al. [22] improve the topic recovery step by adding regu-
larization to smooth the estimated topic-word distributions,
resulting in improved interpretability. A number of authors
have suggested new approaches to find anchor words. Ding
et al. [10] present a distributed algorithm that can be paral-
lelized across multiple servers. Zhou et al. [27] find anchor
words by projecting rows of Q̄ into the plane, and select-
ing words that often appear as extreme points. Lee and
Mimno [18] replace random projections with a single heavy-
tailed t-SNE projection that does not preserve pairwise `2
distances, but preserves local distances, allowing points to
be more spread out in the projected space. Ge and Zou [12]
relaxed the anchor word assumption to a subset separable
assumption that can hold even when anchor words are not
in a single topic, but a combination of a few topics. Other
recent work [17] established criteria necessary for the anchor
factorization. Enforcing these criteria on the input matrix
through an initial rectification step substantially improved
model robustness, especially for small numbers of topics.

More broadly, the anchor words themselves have also proven
to be a useful tool in summarizing the meaning of a topic
and distinguishing a topic from related topics. When cou-
pled with the right visualization and analytic tools, it may
be possible to design semi-supervised learning algorithms
where a domain expert helps choose the final set of anchors.
It is also possible that anchor words will find applications
beyond text analysis, and will enable e�cient algorithms in
other domains much the same way this assumption has in
topic modeling.
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