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9.1 Tensor Decomposition

Let T be a tensor of order 3 with each entry

Tijk = Pr{i, j, k appear in some document}.

If there are n words in the vocabulary, it takes O(n3) time to set up T .

Here we restate the model we are interested in. Each of the k topics is identified with a distribution over words,
represented by n-dimensional vectors  |A1

|

 · · ·
 |Ak
|

 .
Each document is generated by picking its topic proportions from a distribution, which can also be viewed as a vector
x in k-dimensions, where the value in coordinate i represents the proportion of topic i present in the document. Finally,
each word is independently sampled according to the distribution represented by

∑
xiAi, where

∑
xi = 1.

This formulation is very general and includes most widely used probabilistic topic models. When the vector x is
sampled from Dirichlet distribution Dir, it becomes the Latent Dirichlet Allocation (LDA) model.

9.2 The Method of Moments

Let us describe the approach in the context of topic modeling, working with second order moments. Let M be a n×n
matrix, the entry of which

Mij = Pr{i, j are first two words in the document}.

denotes the probability that the first and second words in a randomly generated document are word i and j respectively.

Claim: M = AE[xx>]A>.

Proof.
Mij = E[pipj ]

= E[(A(i)x)(A(j)x)]

= A(i)E[xx>]A(j)>.
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9.3 Nonnegative Matrix Factorization (NMF) [Lee, Seung ’99]

In the Nonnegative Matrix Factorization (NMF) problem we are given an n×m nonnegative matrix M and an integer
r > 0. Our goal is to express M as AB where A and B are nonnegative matrices of size n× r and r×m respectively.
In some applications, it makes sense to ask instead for the product AB to approximate M – i.e. (approximately)
minimize ‖M −AB‖F where ‖‖F denotes the Frobenius norm; we refer to this as Approximate NMF.

Trivial heuristic in this case is Alternating Minimization.

• Fix A, find best B.

• Fix B, find best A.

• Repeat.

Issues:

(i) If the columns of A are not linearly independent then Radons Lemma implies that this expression can be far
from unique.

(ii) The NMF problem is NP-hard when r is large.

(iii) [AGKM ’12] Fixed parameter hard, require nr time assuming complexity assumptions. There is also a matching
nr algorithm.

9.4 The Anchor Word Algorithm

“Anchor words” are specialized words that are specific to a single topic. The condition of separability requires that
each topic contains at least one (unknown) anchor word. That is, ∀ topics Ai, ∃ a word j that appears only in that
topic, “anchur word for topic i”.

A1A2 Ak
∗

...




∗

...


. . .

∗
...


Let M be the row normalized version of M , i.e. each row of M sums up to 1. It follows that

M ij = Pr{2nd word is j given that first word was i}

Claim: All rows of M are convex combinations of rows corresponding to anchor words.

M =
(
A
)
(B)

where A is row normalized.
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M A i

 =

 i


 B



Let B1, . . . , Bk denote anchor rows. All other rows can be written as
∑
λiBi,

∑
i λi = 1, which is in the simplex

determined by anchor rows.

The anchor word algorithm

Alg. 1

Take a row. Try to write it as convex combination of other rows. If not possible, declare it as one of the anchor rows
(i.e. corresponding word i as an anchor word).

Alg. 2

For i = 1, . . . , k, find row furthest from subspace spanned by first i rows you’ve identified.

9.5 Pointwise Mutual Information (PMI)

Diagnose which disease(s) a patient may have by observing the symptoms he/she exhibits. Suppose there are n
symptoms, denoted by si and m diseases, which is latent variable denoted by dj .

Pr{si absent} = 1− exp(−w(i) · d)

Can you infer w given patient symptom data?

PMI(x, y) = lg
P (xy)

P (x)P (y)
“NOISY OR”

PMIij = PMI(1− si, 1− sj) =
∑
i

w(i)w(i)> + ρ
∑
i

w(i) ⊗ w(i)

9.6 Robust Jennrich (Guest lecture by Tengyu Ma)

Given T =
∑d
i=1 ai ⊗ bi ⊗ ci + E

ai, bi, ci ∈ Rd
ai’s are orthogonal
bi’s are orthogonal
ci’s are orthogonal
Goals: to recover {(ai, bi, ci)}
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Jennrich (E = 0)

M = (g ⊗ I ⊗ I)T

=

(
d∑
i=1

giTijk

)
j=1,...,d
k=1,...,d

=

d∑
i=1

(g>ai)bic
>
i

=

b1 . . . bd


g
>a1

. . .
g>ad


 c>1

...
c>d


((A⊗B)(C ⊗D)) = AC ⊗BD)

Robust Jennrich

S = ∅
For s = 1 to O(d1+δ log d)

g ∼ N(0, Id×d)

M = (g> ⊗ I ⊗ I)T

v,w = left and right top s.v. of M

u = (I ⊗ v> ⊗ w>)T

check if (u, v, w) are good by
∑
uivjwkTijk ≥ 1− ε

add (u, v, w) ∈ S if good

M =
∑
〈g, ai〉bic>i︸ ︷︷ ︸

M

+(g ⊗ I ⊗ I)E︸ ︷︷ ︸
E′

w.p. 1
d1−δ

〈g, ai〉 is the largest

〈g, ai〉 ≥
(
max
j 6=i
〈g, aj〉

)
︸ ︷︷ ︸
≈
√
log d

∗(1 + δ)

(〈g, a1〉, . . . , 〈g, ad〉 i.i.d. normal)
eigengap in M is ≥ δ

√
log d

⇒ ‖Top l.s.v. of M − b1‖ ≤ ‖E′‖sp
δ
√
log d

(Wedin’s)

‖E‖{1}{2,3} = ‖E viewed as d× d2‖sp
= max

u∈Rd
v∈Rd×d

∑
i,jk

uivjkTijk

Lem (Ma Shi Steurer)
With high probability

‖(g ⊗ I ⊗ I)T‖sp ≤
√
log dmax{‖E‖{2,3}{1}, ‖E‖{1,3}{2}}


