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Abstract
TCP and its variants have suffered from surprisingly poor
performance for decades. We argue the TCP family has
little hope of achieving consistent high performance due
to a fundamental architectural deficiency: hardwiring
packet-level events to control responses. We propose
Performance-oriented Congestion Control (PCC), a new
congestion control architecture in which each sender
continuously observes the connection between its ac-
tions and empirically experienced performance, enabling
it to consistently adopt actions that result in high perfor-
mance. We prove that PCC converges to a stable and
fair equilibrium. Across many real-world and challeng-
ing environments, PCC shows consistent and often 10×
performance improvement, with better fairness and sta-
bility than TCP. PCC requires no router hardware support
or new packet format.

1 Introduction

In the roughly 25 years since its deployment, TCP’s
congestion control architecture has been notorious for
degraded performance. TCP performs poorly on lossy
links, penalizes high-RTT flows, underutilizes high
bandwidth-delay product (BDP) connections, cannot
handle rapidly changing networks, can collapse under
data center incast [24] and incurs very high latency with
bufferbloat [28] in the network.

As severe performance problems have accumulated
over time, protocol “patches” have addressed prob-
lems in specific network conditions such as high BDP
links [31,52], satellite links [23,42], data center [18,55],
wireless and lossy links [38,39], and more. However, the
fact that there are so many TCP variants suggests that
each is only a point solution: they yield better perfor-
mance under specific network conditions, but break in
others. Worse, we found through real-world experiments
that in many cases these TCP variants’ performance is
still far away from optimal even in the network condi-
tions for which they are specially engineered. Indeed,
TCP’s low performance has impacted industry to the ex-
tent that there is a lucrative market for special-purpose
high performance data transfer services [1, 2, 11, 13].

Thus, the core problem remains largely unsolved:
achieving consistently high performance over complex
real-world network conditions. We argue this is indeed

a very difficult task within TCP’s rate control architec-
ture, which we refer to as hardwired mapping: certain
predefined packet-level events are hardwired to certain
predefined control responses. TCP reacts to events that
can be as simple as “one packet loss” (TCP New Reno)
or can involve multiple signals like “one packet loss and
RTT increased by x%” (TCP Illinois). Similarly, the con-
trol response might be “halve the rate” (New Reno) or a
more complex action like “reduce the window size w to
f (∆RT T )w” (Illinois). The defining feature is that the
control action is a direct function of packet-level events.

A hardwired mapping has to make assumptions about
the network. Take a textbook event-control pair: a packet
loss halves the congestion window. TCP assumes that
the loss indicates congestion in the network. When
the assumption is violated, halving the window size can
severely degrade performance (e.g. if loss is random, rate
should stay the same or increase). It is fundamentally
hard to formulate an “always optimal” hardwired map-
ping in a complex real-world network because the actual
optimal response to an event like a loss (i.e. decrease
rate or increase? by how much?) is sensitive to network
conditions. And modern networks have an immense di-
versity of conditions: random loss and zero loss, shallow
queues and bufferbloat, RTTs of competing flows vary-
ing by more than 1000×, dynamics due to mobile wire-
less or path changes, links from Kbps to Gbps, AQMs,
software routers, rate shaping at gateways, virtualization
layers and middleboxes like firewalls, packet inspectors
and load balancers. These factors add complexity far be-
yond what can be summarized by the relatively simplistic
assumptions embedded in a hardwired mapping. Most
unfortunately, when its assumptions are violated, TCP
still rigidly carries out the harmful control action.

We propose a new congestion control architecture:
Performance-oriented Congestion Control (PCC). PCC’s
goal is to understand what rate control actions improve
performance based on live experimental evidence, avoid-
ing TCP’s assumptions about the network. PCC sends at
a rate r for a short period of time, and observes the re-
sults (e.g. SACKs indicating delivery, loss, and latency
of each packet). It aggregates these packet-level events
into a utility function that describes an objective like
“high throughput and low loss rate”. The result is a sin-
gle numerical performance utility u. At this point, PCC
has run a single “micro-experiment” that showed send-
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ing at rate r produced utility u. To make a rate control
decision, PCC runs multiple such micro-experiments: it
tries sending at two different rates, and moves in the di-
rection that empirically results in greater performance
utility. This is effectively A/B testing for rate control
and is the core of PCC’s decisions. PCC runs these
micro-experiments continuously (on every byte of data,
not on occasional probes), driven by an online learn-
ing algorithm that tracks the empirically-optimal send-
ing rate. Thus, rather than making assumptions about
the potentially-complex network, PCC adopts the actions
that empirically achieve consistent high performance.

PCC’s rate control is selfish in nature, but surpris-
ingly, using a widely applicable utility function, com-
peting PCC senders provably converge to a fair equi-
librium (with a single bottleneck link). Indeed, experi-
ments show PCC achieves similar convergence time to
TCP with significantly smaller rate variance. Moreover,
the ability to express different objectives via choice of
the utility function (e.g. throughput or latency) provides
a flexibility beyond TCP’s architecture.

With handling real-world complexity as a key goal,
we experimentally evaluated a PCC implementation in
large-scale and real-world networks. Without tweak-
ing its control algorithm, PCC achieves consistent high
performance and significantly beats specially engineered
TCPs in various network environments: (a.) in the wild
on the global commercial Internet (often more than 10×10×10×
the throughput of TCP CUBIC); (b.) inter-data center
networks (5.23×5.23×5.23× vs. TCP Illinois); (c.) emulated satel-
lite Internet links (17×17×17× vs TCP Hybla); (d.) unreliable
lossy links (10−37×10−37×10−37× vs Illinois); (e.) unequal RTT of
competing senders (an architectural cure to RTT un-
fairness); (f.) shallow buffered bottleneck links (up to
45×45×45× higher performance, or 13×13×13× less buffer to reach
90% throughput); (g.) rapidly changing networks (14×14×14×
vs CUBIC, 5.6×5.6×5.6× vs Illinois). PCC performs similar to
ICTCP [55] in (h.) the incast scenario in data centers.
Though it is a substantial shift in architecture, PCC can
be deployed by only replacing the sender-side rate con-
trol of TCP. It can also deliver real data today with a user-
space implementation at speedier.net/pcc.

2 PCC Architecture
2.1 The Key Idea
Suppose flow f is sending a stream of data at some rate
and a packet is lost. How should f react? Should it slow
the sending rate, or increase, and by how much? Or leave
the rate unchanged? This is a difficult question to answer
because real networks are complex: a single loss might
be the result of many possible underlying network sce-
narios. To pick a few:
• f may be responsible for most of congestion. Then,

it should decrease its rate.
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Figure 1: The decision-making structure of TCP and PCC.

• f might traverse a shallow buffer on a high-BDP
link, with the loss due to bad luck in statistical mul-
tiplexing rather than high link utilization. Then,
backing off a little is sufficient.

• There may be a higher-rate competing flow. Then,
f should maintain its rate and let the other back off.

• There may be random non-congestion loss some-
where along the path. Then, f should maintain or
increase its rate.

Classically, TCP assumes a packet loss indicates non-
negligible congestion, and that halving its rate will im-
prove network conditions. However, this assumption
is false and will degrade performance in three of the
four scenarios above. Fundamentally, picking an opti-
mal predefined and hardwired control response is hard
because for the same packet-level events, a control re-
sponse optimal under one network scenario can deci-
mate performance in even a slightly different scenario.
The approach taken by a large number of TCP vari-
ants is to use more sophisticated packet-level events and
control actions. But this does not solve the fundamen-
tal problem, because the approach still hardwires pre-
determined events to predetermined control responses,
thus inevitably embedding unreliable assumptions about
the network. When the unreliable assumptions are vi-
olated by the complexity of the network, performance
degrades severely. For example, TCP Illinois [38] uses
both loss and delay to form an event-control mapping,
but its throughput collapses with even a small amount of
random loss, or when network conditions are dynamic
(§4). More examples are in §5.

Most unfortunately, if some control actions are indeed
harming performance, TCP can still blindly “jump off
the cliff”, because it does not notice the control action’s
actual effect on performance.

But that observation points toward a solution. Can
we design a control algorithm that directly understands
whether or not its actions actually improve performance?

Conceptually, no matter how complex the network is,
if a sender can directly measure that rate r1 results in
better performance than rate r2, it has some evidence
that r1 is better than sending at r2 — at least for this
one sender. This example illustrates the key design ra-
tionale behind Performance-oriented Congestion Con-
trol (PCC): PCC makes control decisions based on em-
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pirical evidence pairing actions with directly observed
performance results.

PCC’s control action is its choice of sending rate. PCC
divides time into continuous time periods, called moni-
tor intervals (MIs), whose length is normally one to two
RTTs. In each MI, PCC tests an action: it picks a send-
ing rate, say r, and sends data at rate r through the in-
terval. After about an RTT, the sender will see selective
ACKs (SACK) from the receiver, just like TCP. How-
ever, it does not trigger any predefined control response.
Instead, PCC aggregates these SACKs into meaning-
ful performance metrics including throughput, loss rate
and latency. These performance metrics are combined
to a numerical utility value, say u, via a utility func-
tion. The utility function can be customized for different
data transmission objectives, but for now the reader can
assume the objective of “high throughput and low loss
rate”, such as u = T −L (where T = throughput and L =
loss rate) which will capture the main insights of PCC.
The end result is that PCC knows when it sent at rate r,
it got utility of u.

The preceding describes a single “micro-experiment”
through which PCC associates a specific action with
an observed resulting utility. PCC runs these micro-
experiments continuously, comparing the utility of dif-
ferent sending rates so it can track the optimal action over
time. More specifically, PCC runs an online learning al-
gorithm similar to gradient ascent. When starting at rate
r, it tests rate (1+ε)r and rate (1−ε)r, and moves in the
direction (higher or lower rate) that empirically yields
higher utility. It continues in this direction as long as
utility continues increasing. If utility falls, it returns to
a decision-making state where it again tests both higher
and lower rates to find which produces higher utility.

Note that PCC does not send occasional probes or use
throwaway data for measurements. It observes the results
of its actual control decisions on the application’s real
data and does not pause sending to wait for results.
We now return to the example of the beginning of this
section. Suppose PCC is testing rate 100 Mbps in a par-
ticular interval, and will test 105 Mbps in the following
interval. If it encounters a packet loss in the first inter-
val, will PCC increase or decrease? In fact, there is no
specific event in a single interval that will always cause
PCC to increase or decrease its rate. Instead, PCC will
calculate the utility value for each of these two intervals,
and move in the direction of higher utility. For example:
• If the network is congested as a result of this flow,

then it is likely that sending at 100 Mbps will have
similar throughput and lower loss rate, resulting in
higher utility. PCC will decrease its rate.

• If the network is experiencing random loss, PCC is
likely to find that the period with rate 105 Mbps has
similar loss rate and slightly higher throughput, re-

sulting in higher utility. PCC will therefore increase
its rate despite the packet loss.

Throughout this process, PCC makes no assumptions
about the underlying network conditions, instead observ-
ing which actions empirically produce higher utility and
therefore achieving consistent high performance.
Decisions with noisy measurements. PCC’s experi-
ments on the live network will tend to move its rate in
the direction that improves utility. But it may also make
some incorrect decisions. In the example above, if the
loss is random non-congestion loss, it may randomly oc-
cur that loss is substantially higher when PCC tests rate
105 Mbps, causing it to pick the lower rate. Alternately,
if the loss is primarily due to congestion from this sender,
unpredictable external events (perhaps another sender ar-
riving with a large initial rate while PCC is testing rate
100 Mbps) might cause a particular 105 Mbps microex-
periment to have higher throughput and lower loss rate.
More generally, the network might be changing over time
for reasons unrelated to the sender’s action. This adds
noise to the decision process: PCC will on average move
in the right direction, but may make some unlucky errors.

We improve PCC’s decisions with multiple random-
ized controlled trials (RCTs). Rather than running two
tests (one each at 100 and 105 Mbps), we conduct four
in randomized order—e.g. perhaps (100,105,105,100).
PCC only picks a particular rate as the winner if util-
ity is higher in both trials with that rate. This pro-
duces increased confidence in a causal connection be-
tween PCC’s action and the observed utility. If results
are inconclusive, so each rate “wins” in one test, then
PCC maintains its current rate, and we may have reached
a local optimum (details follow later).

As we will see, without RCTs, PCC already offers a
dramatic improvement in performance and stability com-
pared with TCP, but RCTs further reduce rate variance by
up to 35%. Although it might seem that RCTs will dou-
ble convergence time, this is not the case because they
help PCC make better decisions; overall, RCTs improve
the stability/convergence-speed tradeoff space.
Many issues remain. We next delve into fairness, con-
vergence, and choice of utility function; deployment; and
flesh out the mechanism sketched above.

2.2 Fairness and Convergence
Each PCC sender optimizes its utility function value
based only on locally observed performance metrics.
However, this local selfishness does not imply loss of
global stability, convergence and fairness. We next show
that when selfish senders use a particular “safe” utility
function and a simple control algorithm, they provably
converge to fair rate equilibrium.

We assume n PCC senders 1, . . . ,n send traffic across
a bottleneck link of capacity C > 0. Each sender i
chooses its sending rate xi to optimize its utility function
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ui. We choose a utility function expressing the common
application-level goal of “high throughput and low loss”:

ui(xi) = Ti ·Sigmoidα(Li −0.05)− xi ·Li

where xi is sender i’s sending rate, Li is the observed
data loss rate, Ti = xi(1 − Li) is sender i’s throughput,
and Sigmoidα(y) = 1

1+eαy for some α > 0 to be chosen
later.

The above utility function is derived from a simpler
starting point: ui(xi) = Ti − xi · Li, i.e., i’s throughput
minus the production of its loss rate and sending rate.
However, this utility function will make loss rate at equi-
librium point approach 50% when the number of com-
peting senders increases. Therefore, we include the sig-
moid function as a “cut-off”. When α is “big enough”,
Sigmoidα(Li − 0.05) will rapidly get closer to 0 as soon
as Li exceeds 0.05, leading to a negative utility for the
sender. Thus, we are setting a barrier that caps the over-
all loss rate at about 5% in the worst case.
Theorem 1 When α ≥ max{2.2(n− 1),100}, there ex-
ists a unique stable state of sending rates x∗1, . . . ,x

∗
n and,

moreover, this state is fair, i.e., x∗1 = x∗2 = . . .= x∗n.
To prove Theorem 1, we first prove that Σ jx j will al-

ways be restricted to the region of (C, 20C
19 ). Under this

condition, our setting can be formulated as a concave
game [46]. This enables us to use properties of such
games to conclude that a unique rate equilibrium exists
and is fair, i.e. x∗1 = x∗2 = . . .= x∗n. (Full proof: [6])

Next, we show that a simple control algorithm can
converge to that equilibrium. At each time step t, each
sender j updates its sending rate according to xt+1

j =

xt
j(1 + ε) if j’s utility would improve if it unilaterally

made this change, and xt+1
j = xt

j(1− ε) otherwise. Here
ε > 0 is a small number (ε = 0.01, in the experiment). In
this model, senders concurrently update their rates, but
each sender decides based on a utility comparison as if
it were the only one changing. This model does not ex-
plicitly consider measurement delay, but we believe it is
a reasonable simplification (and experimental evidence
bears out the conclusions). We also conjecture the model
can be relaxed to allow for asynchrony. We discuss in §3
our implementation with practical optimizations of the
control algorithm.
Theorem 2 If all senders follow the above control al-
gorithm, for every sender j, x j converges to the domain
(x̂(1− ε)2, x̂(1+ ε)2), where x̂ denotes the sending rate
in the unique stable state.

It might seem surprising that PCC uses multiplicative
rate increase and decrease, yet achieves convergence and
fairness. If TCP used MIMD, in an idealized network
senders would often get the same back-off signal at the
same time, and so would take the same multiplicative
decisions in lockstep, with the ratio of their rates never
changing. In PCC, senders make different decisions.

Consider a 100 Mbps link with sender A at rate 90 Mbps
and B at 10 Mbps. When A experiments with slightly
higher and lower rates (1±ε)90 Mbps, it will find that it
should decrease its rate to get higher utility because when
it sends at higher than equilibrium rate, the loss rate dom-
inates the utility function. However, when B experiments
with (1 ± ε)10 Mbps it finds that loss rate increase is
negligible compared with its improved throughput. This
occurs precisely because B is responsible for little of the
congestion. In fact, this reasoning (and the formal proof
of the game dynamics) is independent of the step size that
the flows use in their experiments: PCC senders move
towards the convergence point, even if they use a hetero-
geneous mix of AIMD, AIAD, MIMD, MIAD or other
step functions. Convergence behavior does depend on
the choice of utility function, however.

2.3 Utility Function: Source of Flexibility
PCC carries a level of flexibility beyond TCP’s ar-
chitecture: the same learning control algorithm can
cater to different applications’ heterogeneous objectives
(e.g. latency vs. throughput) by using different util-
ity functions. For example, under TCP’s architecture,
latency based protocols [38, 52] usually contain differ-
ent hardwired mapping algorithms than loss-based pro-
tocols [31]. Therefore, without changing the control al-
gorithm, as Sivaraman et al. [47] recently observed, TCP
has to rely on different in-network active queue manage-
ment (AQM) mechanisms to cater to different applica-
tions’ objectives because even with fair queueing, TCP
is blind to applications’ objectives. However, by liter-
ally changing one line of code that describes the util-
ity function, PCC can flip from “loss-based” (§2.2) to
“latency-based” (§4.4) and thus caters to different appli-
cations’ objectives without the complexity and cost of
programmable AQMs [47]. That said, alternate utility
functions are a largely unexplored area of PCC; in this
work, we evaluate alternate utility functions only in the
context of fair queueing (§4.4).

2.4 Deployment
Despite being a significant architectural shift, PCC needs
only isolated changes. No router support: unlike ECN,
XCP [35], and RCP [25], there are no new packet fields
to be standardized and processed by routers. No new
protocol: The packet format and semantics can sim-
ply remain as in TCP (SACK, hand-shaking and etc.).
No receiver change: TCP SACK is enough feedback.
What PCC does change is the control algorithm within
the sender.

The remaining concern is how PCC safely replaces
and interacts with TCP. We observe that there are many
scenarios where critical applications suffer severely from
TCP’s poor performance and PCC can be safely de-
ployed by fully replacing or being isolated from TCP.
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First, when a network resource is owned by a single
entity or can be reserved for it, the owner can replace
TCP entirely with PCC. For example, some Content De-
livery Network (CDN) providers use dedicated network
infrastructure to move large amounts of data across con-
tinents [9, 10], and scientific institutes can reserve band-
width for exchanging huge scientific data globally [26].
Second, PCC can be used in challenging network condi-
tions where per-user or per-tenant resource isolation
is enforced by the network. Satellite Internet providers
are known to use per-user bandwidth isolation to allocate
the valuable bandwidth resource [15]. For data centers
with per-tenant resource isolation [30, 43, 44], an indi-
vidual tenant can use PCC safely within its virtual net-
work to address problems such as incast and improve
data transfer performance between data centers.

The above applications, where PCC can fully replace
or be isolated from TCP, are a significant opportunity for
PCC. But in fact, PCC does not depend on any kind of
resource isolation to work. In the public Internet, the
key issue is TCP friendliness. Using PCC with the util-
ity function described in §2.2 is not TCP friendly. How-
ever, we also study the following utility function which
incorporates latency: ui(x) = (Ti · Sigmoidα(Li − 0.05) ·
Sigmoidβ (

RT Tn−1
RT Tn

−1)−xi ·Li)/RT Tn where RT Tn−1 and
RT Tn are the average RTT of the previous and current
MI, respectively. In §4.3.1 we show that with this utility
function, PCC successfully achieves TCP friendliness in
various network conditions. Indeed, it is even possible
for PCC to be TCP friendly while achieving much higher
performance in challenging scenarios (by taking advan-
tage of the capacity TCP’s poor control algorithm leaves
unused). Overall, this is a promising direction but we
only take the first steps in this paper.

It is still possible that individual users will, due to
its significantly improved performance, decide to deploy
PCC in the public Internet with the default utility func-
tion. It turns out that the default utility function’s un-
friendliness to TCP is comparable to the common prac-
tice of opening parallel TCP connections used by web
browsers today [3], so it is unlikely to make the ecosys-
tem dramatically worse for TCP; see §4.3.2.

3 Prototype Design
We implemented a prototype of PCC in user space by
adapting the UDP-based TCP skeleton in the UDT [16]
package. Fig. 2 depicts our prototype’s components.

3.1 Performance Monitoring
As described in §2.1 and shown in Fig. 3, the time-
line is sliced into chunks of duration of Tm called the
Monitor Interval (MI). When the Sending Module sends
packets (new or retransmission) at a certain sending rate
instructed by the Performance-oriented Control Module,
the Monitor Module will remember what packets are sent
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out during each MI. As the SACK comes back from re-
ceiver, the Monitor will know what happened (received?
lost? RTT?) to each packet sent out during an MI. Taking
the example of Fig. 3, the Monitor knows what packets
were sent during MI1, spanning T0 to T0 +Tm. At time
T1, approximately one RTT after T0 +Tm, it has received
the SACKs for all packets sent out in MI1. The Moni-
tor aggregates these individual SACKs into meaningful
performance metrics including throughput, loss rate and
average RTT. The performance metrics are then com-
bined by a utility function; unless otherwise stated, we
use the utility function of §2.2. The result of this is that
we associate a control action of each MI (sending rate)
with its performance result (utility). This pair forms a
“micro-experiment” and is used by the performance ori-
ented control module.

To ensure there are enough packets in one monitor in-
terval, we set Tm to the maximum of (a) the time to send
10 data packets and (b) a uniform-random time in the
range [1.7,2.2] RTT. Again, we want to highlight that
PCC does not pause sending packets to wait for perfor-
mance results, and it does not decide on a rate and send
for a long time; packet transfer and measurement-control
cycles occur continuously.

Note that the measurement results of one MI can arrive
after the next MI has begun, and the control module can
decide to change sending rate after processing this result.
As an optimization, PCC will immediately change the
rate and “re-align” the current MI’s starting time with
the time of rate change without waiting for the next MI.

3.2 Control Algorithm
We designed a practical control algorithm with the gist
of the simple control algorithm described in §2.2.

Starting State: PCC starts at rate 2 ·MSS/RT T (i.e.,
3KB/RT T ) and doubles its rate at each consecutive mon-
itor interval (MI), like TCP. Unlike TCP, PCC does not
exit this starting phase because of a packet loss. Instead,
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it monitors the utility result of each rate doubling action.
Only when the utility decreases, PCC exits the starting
state, returns to the previous rate which had higher util-
ity (i.e., half of the rate), and enters the Decision Mak-
ing State. PCC could use other more aggressive startup
strategies, but such improvements could be applied to
TCP as well.

Decision Making State: Assume PCC is currently at
rate r. To decide which direction and amount to change
its rate, PCC conducts multiple randomized controlled
trials (RCTs). PCC takes four consecutive MIs and di-
vides them into two pairs (2 MIs each). For each pair,
PCC attempts a slightly higher rate r(1+ ε) and slightly
lower rate r(1 − ε), each for one MI, in random or-
der. After the four consecutive trials, PCC changes the
rate back to r and keeps aggregating SACKs until the
Monitor generates the utility value for these four trials.
For each pair i ∈ 1,2, PCC gets two utility measure-
ments U+

i ,U−
i corresponding to r(1 + ε),r(1 − ε) re-

spectively. If the higher rate consistently has higher util-
ity (U+

i >U−
i ∀i ∈ {1,2}), then PCC adjusts its sending

rate to rnew = r(1+ ε); and if the lower rate consistently
has higher utility then PCC picks rnew = r(1− ε). How-
ever, if the results are inconclusive, e.g. U+

1 > U−
1 but

U+
2 < U−

2 , PCC stays at its current rate r and re-enters
the Decision Making State with larger experiment granu-
larity, ε = ε+εmin. The granularity starts from εmin when
it enters the Decision Making State for the first time and
will increase up to εmax if the process continues to be in-
conclusive. This increase of granularity helps PCC avoid
getting stuck due to noise. Unless otherwise stated, we
use εmin = 0.01 and εmax = 0.05.

Rate Adjusting State: Assume the new rate after De-
cision Making is r0 and dir = ±1 is the chosen mov-
ing direction. In each MI, PCC adjusts its rate in that
direction faster and faster, setting the new rate rn as:
rn = rn−1 · (1 + n · εmin · dir). However, if utility falls,
i.e. U(rn) < U(rn−1), PCC reverts its rate to rn−1 and
moves back to the Decision Making State.

4 Evaluation

We demonstrate PCC’s architectural advantages over the
TCP family through diversified, large-scale and real-
world experiments: §4.1: PCC achieves its design
goal of consistent high performance. §4.2: PCC
can actually achieve much better fairness and conver-
gence/stability tradeoff than TCP. §4.3: PCC is prac-
tically deployable in terms of flow completion time
for short flows and TCP friendliness. §4.4: PCC has
a huge potential to flexibly optimize for applications’
heterogenous objectives with fair queuing in the net-
work rather than more complicated AQMs [47].

Transmission Pair RTT PCC SABUL CUBIC Illinois

GPO → NYSERNet 12 818 563 129 326
GPO → Missouri 47 624 531 80.7 90.1

GPO → Illinois 35 766 664 84.5 102
NYSERNet → Missouri 47 816 662 108 109

Wisconsin → Illinois 9 801 700 547 562
GPO → Wisc. 38 783 487 79.3 120

NYSERNet → Wisc. 38 791 673 134 134
Missouri → Wisc. 21 807 698 259 262

NYSERNet → Illinois 36 808 674 141 141

Table 1: PCC significantly outperforms TCP in inter-data
center environments. RTT is in msec; throughput in Mbps.

4.1 Consistent High Performance
We evaluate PCC’s performance under 8 real-world chal-
lenging network scenarios with with no algorithm tweak-
ing for different scenarios. Unless otherwise stated, all
experiments using the same default utility function of
§2.2. In the first 7 scenarios, PCC significantly outper-
forms specially engineered TCP variants.

4.1.1 Inter-Data Center Environment
Here we evaluate PCC’s performance in scenarios like
inter-data center data transfer [5] and dedicated CDN
backbones [9] where network resources can be isolated
or reserved for a single entity.

The GENI testbed [7], which has reservable bare-
metal servers across the U.S. and reservable band-
width [8] over the Internet2 backbone, provides us a rep-
resentative evaluation environment. We choose 9 pairs
of GENI sites and reserved 800Mbps end-to-end dedi-
cated bandwidth between each pair. We compare PCC,
SABUL [29], TCP CUBIC [31] and TCP Illinois [38]
over 100-second runs.

As shown in Table 1, PCC significantly outperforms
TCP Illinois, by 5.2× on average and up to 7.5×. It
is surprising that even in this very clean network, spe-
cially optimized TCPs still perform far from optimal. We
believe some part of the gain is because the bandwidth-
reserving rate limiter has a small buffer and TCP will
overflow it, unnecessarily decreasing rate and also intro-
ducing latency jitter that confuses TCP Illinois. (TCP
pacing will not resolve this problem; §4.1.5.) On the
other hand, PCC continuously tracks the optimal send-
ing rate by continuously measuring performance.

4.1.2 Satellite Links
Satellite Internet is widely used for critical missions such
as emergency and military communication and Inter-
net access for rural areas. Because TCP suffers from
severely degraded performance on satellite links that
have excessive latency (600ms to 1500ms RTT [14]) and
relatively high random loss rate [42], special modifica-
tions of TCP (Hybla [23], Illinois) were proposed and
special infrastructure has even been built [32, 50].

We test PCC against TCP Hybla (widely used in real-
world satellite communication), Illinois and CUBIC un-
der emulated satellite links on Emulab parameterized

6



USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 401

�����

����

��

���

����

�� ��� ���� �����

�
��
��
��
��
��
��
��
��

���������������������������

�������������

���
���������
������������
���������
������������

Figure 4: PCC outperforms special
TCP modifications on emulated satel-
lite links
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Figure 5: PCC is highly resilient to
random loss compared to specially-
engineered TCPs
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Figure 6: PCC achieves better RTT
fairness than specially engineered
TCPs

with the real-world measurements of the WINDs satel-
lite Internet system [42]. The satellite link has 800ms
RTT, 42Mbps capacity and 0.74% random loss. As
shown in Fig. 4, we vary the bottleneck buffer from
1.5KB to 1MB and compare PCC’s average through-
put against different TCP variants with 100 second trials.
PCC achieves 90% of optimal throughput even with only
a 7.5KB buffer (5 packets) at the bottleneck. However,
even with 1MB buffer, the widely used TCP Hybla can
only achieve 2.03Mbps which is 17× worse than PCC.
TCP Illinois, which is designed for high random loss tol-
erance, performs 54× worse than PCC with 1MB buffer.

4.1.3 Unreliable Lossy Links
To further quantify the effect of random loss, we set up a
link on Emulab with 100Mbps bandwidth, 30ms RTT
and varying loss rate. As shown in Fig. 5, PCC can
reach > 95% of achievable throughput capacity until loss
rate reaches 1% and shows relatively graceful perfor-
mance degradation from 95% to 74% of capacity as loss
rate increases to 2%. However, TCP’s performance col-
lapses very quickly: CUBIC’s performance collapses to
10× smaller than PCC with only 0.1% loss rate and 37×
smaller than PCC with 2% random loss. TCP Illinois
shows better resilience than CUBIC but throughput still
degrades severely to less than 10% of PCC’s throughput
with only 0.7% loss rate and 16× smaller with 2% ran-
dom loss. Again, PCC can endure random loss because
it looks at real utility: unless link capacity is reached,
a higher rate will always result in similar loss rate and
higher throughput, which translates to higher utility.

PCC’s performance does decrease to 3% of the opti-
mal achievable throughput when loss rate increases to
6% because we are using the “safe” utility function of
§2.2 that caps the loss rate to 5%1.

4.1.4 Mitigating RTT Unfairness
For unmodified TCP, short-RTT flows dominate long-
RTT flows on throughput. Subsequent modifications of

1Throughput does not decrease to 0% because the sigmoid function
is not a clean cut-off.

TCP such as CUBIC or Hybla try to mitigate this prob-
lem by making the expansion of the congestion window
independent of RTT. However, the modifications cause
new problems like parameter tuning (Hybla) and severely
affect stability on high RTT links (CUBIC) [31]. Be-
cause PCC’s convergence is based on real performance
not the control cycle length, it acts as an architectural
cure for the RTT unfairness problem. To demonstrate
that, on Emulab we set one short-RTT (10ms) and
one long-RTT (varying from 20ms to 100ms) network
path sharing the same bottleneck link of 100Mbit/s
bandwidth and buffer equal to the BDP of the short-RTT
flow. We run the long-RTT flow first for 5s, letting it
grab the bandwidth, and then let the short-RTT flow join
to compete with the long-RTT flow for 500s and calcu-
late the ratio of the two flows’ throughput. As shown in
Fig. 6, PCC achieves much better RTT fairness than New
Reno and even CUBIC cannot perform as well as PCC.

4.1.5 Small Buffers on the Bottleneck Link
TCP cannot distinguish between loss due to congestion
and loss simply due to buffer overflow. In face of high
BDP links, a shallow-buffered router will keep chop-
ping TCP’s window in half and the recovery process
is very slow. On the other hand, the practice of over-
buffering networks, in the fear that an under-buffered
router will drop packets or leave the network severely
under-utilized, results in bufferbloat [28], increasing la-
tency. This conflict makes choosing the right buffer size
for routers a challenging multi-dimensional optimization
problem [27,45,51] for network operators to balance be-
tween throughput, latency, cost of buffer memory, degree
of multiplexing, etc.

Choosing the right buffer size would be much less dif-
ficult if the transport protocol could efficiently utilize a
network with very shallow buffers. Therefore, we test
how PCC performs with a tiny buffer and compare with
TCP CUBIC, which is known to mitigate this problem.
Moreover, to address the concern that the performance
gain of PCC is merely due to PCC’s use of packet pac-
ing, we also test an implementation of TCP New Reno
with pacing rate of (congestionwindow)/(RT T ). We set
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Figure 7: PCC efficiently utilizes
shallow-buffered networks
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Figure 8: Across the public Internet,
PCC has ≥ 10× the performance of
TCP CUBIC on 41% of tested pairs

��

���

���

���

���

���

���

���

���

���

����

���� �� �� �� �� ��� ��� ��� ���� ���� ����

��
��
��
��
��
��
���
��
��
�

�������������������������������

�������������
�����
�����
�������������

Figure 9: PCC’s performance gain is
not merely due to TCP unfriendliness
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Figure 10: PCC can always track optimal sending rate even
with drastically changing network conditions

up on Emulab a network path with 30ms RTT, 100Mbps
bottleneck bandwidth and vary the network buffer
size from 1.5KB (one packet) to 375KB (1×BDP) and
compare the protocols’ average throughput over 100s.

As shown in 7, PCC only requires 6 · MSS (9 KB)
buffer to reach 90% capacity. With the same buffer,
CUBIC can only reach 2% capacity and even TCP with
packet pacing can only reach 30%. CUBIC requires 13×
more buffer than PCC to reach 90% throughput and takes
36× more buffer to close the 10% gap. Even with pacing,
TCP still requires 25× more buffer than PCC to reach
90% throughput. It is also interesting to notice that with
just a single-packet buffer, PCC’s throughput can reach
25% of capacity, 35× higher throughput than TCP CU-
BIC. The reason is that PCC constantly monitors the real
achieved performance and steadily tracks its rate at the
bottleneck rate without swinging up and down like TCP.
That means with PCC, network operators can use shal-
low buffered routers to get low latency without harm-
ing throughput.
4.1.6 Rapidly Changing Networks
The above scenarios are static environments. Next, we
study a network that changes rapidly during the test. We
set up on Emulab a network path where available band-
width, loss rate and RTT are all changing every 5
seconds. Each parameter is chosen independently from
a uniform random distribution with bandwidth ranging
from 10Mbps to 100Mbps, latency from 10ms to 100ms
and loss rate from 0% to 1%.

Figure 10 shows available bandwidth (optimal send-

ing rate), and the sending rate of PCC, CUBIC and Illi-
nois. Note that we show the PCC control algorithm’s
chosen sending rate (not its throughput) to get insight
into how PCC handles network dynamics. Even with
all network parameters rapidly changing, PCC tracks the
available bandwidth very well, unlike the TCPs. Over
the course of the experiment (500s), PCC’s throughput
averages 44.9Mbps, achieving 83% of the optimal, while
TCP CUBIC and TCP Illinois are 14× and 5.6× worse
than PCC respectively.

4.1.7 Big Data Transfer in the Wild
Due to its complexity, the commercial Internet is an at-
tractive place to test whether PCC can achieve consis-
tently high performance. We deploy PCC’s receiver on
85 globally distributed PlanetLab [17] nodes and senders
on 6 locations: five GENI [7] sites and our local server,
and ran experiments over a 2-week period in December
2013. These 510 sending-receiving pairs render a very
diverse testing environment with BDP from 14.3 KB to
18 MB.

We first test PCC against TCP CUBIC, the Linux ker-
nel default since 2.6.19; and also SABUL [16], a spe-
cial modification of TCP for high BDP links. For each
sender-receiver pair, we run TCP iperf between them for
100 seconds, wait for 500 seconds and then run PCC for
100 seconds to compare their average throughput. PCC
improves throughput by 5.52× at the median (Fig. 8).
On 41% of sender-receiver pairs, PCC’s improvement is
more than 10×. This is a conservative result because 4
GENI sites have 100Mbps bandwidth limits on their In-
ternet uplinks.

We also tested two other non-TCP transport proto-
cols on smaller scale experiments: the public releases
of PCP [12,20] (43 sending receiving pairs) and SABUL
(85 sending receiving pairs). PCP uses packet-trains [33]
to probe available bandwidth. However, as discussed
more in §5, this bandwidth probing is different from
PCC’s control based on empirically observed action-
utility pairs, and contains unreliable assumptions that can
yield very inaccurate sample results. SABUL, widely
used for scientific data transfer, packs a full set of boost-
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ing techniques: packet pacing, latency monitoring, ran-
dom loss tolerance, etc. However, SABUL still mechan-
ically hardwires control action to packet-level events.
Fig. 8 shows PCC outperforms PCP2 by 4.58× at the
median and 15.03× at the 90th percentile, and outper-
forms SABUL by 1.41× at the median and 3.39× at the
90th percentile. SABUL shows an unstable control loop:
it aggressively overshoots the network and then deeply
falls back. On the other hand, PCC stably tracks the op-
timal rate. As a result, SABUL suffers from 11% loss on
average compared with PCC’s 3% loss.

Is PCC’s performance gain merely due to TCP un-
friendliness of the default utility function? In fact,
PCC’s high performance gain should not be surprising
given our results in previous experiments, none of which
involved PCC and TCP sharing bandwidth. Neverthe-
less, we ran another experiment, this time with PCC us-
ing the more TCP-friendly utility function described in
§2.4 with β = 10 (its TCP friendliness is evaluated in
§ 4.3.1), from a server at UIUC3 to 134 PlanetLab nodes
in February 2015. Fig. 9 compares the results with the
default utility function (PCC d) and the friendlier util-
ity function (PCC f). PCC f still shows a median of
4.38× gain over TCP while PCC d shows 5.19×. For
50 pairs, PCC d yields smaller than 3% higher through-
put than PCC f and for the remaining 84 pairs, the me-
dian inflation is only 14%. The use of the PCC f utility
function does not fully rule out the possibility of TCP
unfriendliness, because our evaluation of its TCP friend-
liness (§4.3.1) does not cover all possible network sce-
narios involved in this experiment. However, it is highly
suggestive that the performance gain is not merely due to
TCP unfriendliness.

Instead, the results indicate that PCC’s advantage
comes from its ability to deal with complex network con-
ditions. In particular, geolocation revealed that the large-
gain results often involved cross-continent links. On
cross-continent links (68 pairs), PCC f yielded a median
gain of 25× compared with 2.33× on intra-continent
links (69 pairs). We believe TCP’s problem with cross-
continent links is not an end-host parameter tuning prob-
lem (e.g. sending/receiving buffer size), because there
are paths with similar RTT where TCP can still achieve
high throughput with identical OS and configuration.

4.1.8 Incast
Moving from wide-area networks to the data center,
we now investigate TCP incast [24], which occurs in
high bandwidth and low latency networks when mul-

2initial − rate = 1Mbps, poll − interval = 100µs. PCP in many
cases abnormally slows down (e.g. 1 packet per 100ms). We have not
determined whether this is an implementation bug in PCP or a more
fundamental deficiency. To be conservative, we excluded all such re-
sults from the comparison.

3The OS was Fedora 21 with kernel version 3.17.4-301.
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Figure 11: PCC largely mitigates TCP incast in a data center
environment
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(a) PCC maintains a stable rate with competing senders
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(b) TCP CUBIC shows high rate variance and unfairness at short time scales

Figure 12: PCC’s dynamics are much more stable than TCP
CUBIC with senders competing on a FIFO queue
tiple senders send data to one receiver concurrently,
causing throughput collapse. To solve the TCP incast
problem, many protocols have been proposed, includ-
ing ICTCP [55] and DCTCP [18]. Here, we demonstrate
PCC can achieve high performance under incast without
special-purpose algorithms. We deployed PCC on Emu-
lab [53] with 33 senders and 1 receiver.

Fig. 11 shows the goodput of PCC and TCP across
various flow sizes and numbers of senders. Each point
is the average of 15 trials. When incast congestion be-
gins to happen with roughly ≥ 10 senders, PCC achieves
roughly 60-80% of the maximum possible goodput, or
7-8× that of TCP. Note that ICTCP [55] also achieved
roughly 60-80% goodput in a similar environment. Also,
DCTCP’s goodput degraded with increasing number of
senders [18], while PCC’s is very stable.

4.2 Dynamic Behavior of Competing Flows
We proved in §2.2 that with our “safe” utility function,
competing PCC flows converge to a fair equilibrium from
any initial state. In this section, we experimentally show
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Figure 16: PCC has better reactiveness-stability tradeoff
than TCP, particularly with its RCT mechanism
that PCC is much more stable, more fair and achieves
a better tradeoff between stability and reactiveness
than TCP. PCC’s stability can immediately translate to
benefits for applications such as video streaming where
stable rate in presence of congestion is desired [34].

4.2.1 PCC is More Fair and Stable Than TCP
To compare PCC and TCP’s convergence process in ac-
tion, we set up a dumbbell topology on Emulab with
four senders and four receivers sharing a bottleneck
link with 30ms RTT, 100Mbps bandwidth. Bottleneck
router buffer size is set to the BDP to allow CUBIC to
reach full throughput.

The data transmission of the four pairs initiates se-
quentially with a 500s interval and each pair transmits
continuously for 2000s. Fig. 12 shows the rate conver-
gence process for PCC and CUBIC respectively with 1s
granularity. It is visually obvious that PCC flows con-
verge much more stably than TCP, which has surpris-
ingly high rate variance. Quantitatively, we compare
PCC’s and TCP’s fairness ratio (Jain’s index) at differ-
ent time scales (Fig. 13). Selfishly competing PCC flows
achieve better fairness than TCP at all time scales.

4.2.2 PCC has better Stability-Reactiveness trade-
off than TCP

Intuitively, PCC’s control cycle is “longer” than TCP due
to performance monitoring. Is PCC’s significantly bet-
ter stability and fairness achieved by severely sacrificing
convergence time?

We set up two sending-receiving pairs sharing a bot-
tleneck link of 100Mbps and 30ms RTT. We conduct the
experiment by letting the first flow, flow A, come in the
network for 20s and then let the second flow, flow B,
begin. We define the convergence time in a “forward-
looking” way: we say flow B’s convergence time is the
smallest t for which throughput in each second from t
to t + 5s is within ±25% of the ideal equal rate. We
measure stability by measuring the standard deviation of
throughput of flow B for 60s after convergence time. All
results are averaged over 15 trials. PCC can achieve var-

ious points in the stability-reactiveness trade-off space
by adjusting its parameters: higher step size εmin and
lower monitor interval Tm result in faster convergence
but higher throughput variance. In Fig. 16, we plot a
trade-off curve for PCC by choosing a range of different
settings of these parameters.4 There is a clear conver-
gence speed and stability trade-off: higher εmin and lower
Tm result in faster convergence and higher variance and
vice versa. We also show six TCP variants as individual
points in the trade-off space. The TCPs either have very
long convergence time or high variance. On the other
hand, PCC achieves a much better trade-off. For exam-
ple, PCC with Tm = 1.0 ·RT T and εmin = 0.02 achieves
the same convergence time and 4.2× smaller rate vari-
ance than CUBIC.

Fig. 16 also shows the benefit of the RCT mecha-
nism described in §3.2. While the improvement might
look small, it actually helps most in the “sweet spot”
where convergence time and rate variance are both small,
and where improvements are most difficult and most
valuable. Intuitively, with a long monitor interval, PCC
gains enough information to make a low-noise decision
even in a single interval. But when it tries to make
reasonably quick decisions, multiple RCTs help sepa-
rate signal from noise. Though RCT doubles the time
to make a decision in PCC’s Decision State, the conver-
gence time of PCC using RCT only shows slight increase
because it makes better decisions. With Tm = 1.0 ·RT T
and εmin = 0.01, RCT trades 3% increase in convergence
time for 35% reduction in rate variance.

4.3 PCC is Deployable
4.3.1 A Promising Solution to TCP Friendliness

30ms 60ms 90ms

β = 10
10Mbit/s 0.94 0.75 0.67
50Mbit/s 0.74 0.73 0.81
90Mbit/s 0.89 0.91 1.01

β = 100
10Mbit/s 0.71 0.58 0.63
50Mbit/s 0.56 0.58 0.54
90Mbit/s 0.63 0.62 0.88

Table 2: PCC can be TCP friendly

To illustrate that PCC does not have to be TCP un-
friendly, we evaluate the utility function proposed in
§ 2.4. We initiate two competing flows on Emulab: a
reference flow running TCP CUBIC, and a competing
flow running either TCP CUBIC or PCC, under vari-
ous bandwidth and latency combinations with bottleneck
buffer always equal to the BDP. We compute the ratio
of average (over five runs) of throughput of reference
flow when it competes with CUBIC, divided by the same
value when it competes with PCC. If the ratio is smaller
than 1, PCC is more friendly than CUBIC. As shown in

4We first fix εmin at 0.01 and vary the length of Tm from 4.8×RTT
down to 1×RTT. Then we fix Tm at 1×RTT and vary εmin from 0.01
to 0.05. This is not a full exploration of the parameter space, so other
settings might actually achieve better trade-off points.
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Figure 13: PCC achieves better fair-
ness and convergence than TCP CU-
BIC
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Figure 14: The default PCC utility
function’s TCP unfriendliness is simi-
lar to common selfish practice
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Figure 15: PCC can achieve flow
completion time for short flows simi-
lar to TCP

Table 2, PCC is already TCP friendly and with β = 100,
PCC’s performance is dominated by TCP. We consider
this only a first step towards a TCP friendliness evalu-
ation because these results also indicate PCC’s friendli-
ness can depend on the network environment. However,
this initial result shows promise in finding a utility func-
tion that is sufficiently TCP friendly while also offering
higher performance (note that this same utility function
achieved higher performance than TCP in § 4.1.7).
4.3.2 TCP Friendliness of Default Utility Function
Applications today often adopt “selfish” practices to im-
prove performance [3]; for example, Chrome opens be-
tween 6 (default) and 10 (maximum) parallel connec-
tions and Internet Explorer 11 opens between 13 and
17. We compare the unfriendliness of PCC’s default util-
ity function with these selfish practices by running two
competing streams: one with a single PCC flow and the
other with parallel TCP connections like the aforemen-
tioned web browsers. Fig. 14 shows the ratio of PCC’s
throughput to the total of the parallel TCP connections,
over 100 seconds averaging over 5 runs under different
bandwidth and RTT combinations. As shown in Fig. 14,
PCC is similarly aggressive to 13 parallel TCP connec-
tions (IE11 default) and more friendly than 17 (IE11
maximum). Therefore, even using PCC’s default utility
function in the wild may not make the ecosystem dra-
matically worse for TCP. Moreover, simply using paral-
lel connections cannot achieve consistently high perfor-
mance and stability like PCC and initiating parallel con-
nections involves added overhead in many applications.
4.3.3 Flow Completion Time for Short Flows
Will the “learning” nature of PCC harm flow completion
time (FCT)? In this section, we resolve this concern by
showing that with a startup phase similar to TCP (§3),
PCC achieves similar FCT for short flows.

We set up a link on Emulab with 15 Mbps band-
width and 60ms RTT. The sender sends short flows of
100KB each to receiver. The interval between two short
flows is exponentially distributed with mean interval cho-
sen to control the utilization of the link. As shown in
Fig. 15, with network load ranging from 5% to 75%,

PCC achieves similar FCT at the median and 95th per-
centile. The 95th percentile FCT with 75% utilization is
20% longer than TCP. However, we believe this is a solv-
able engineering issue. The purpose of this experiment
is to show PCC does not fundamentally harm short flow
performance. There is clearly room for improvement in
the startup algorithm of all these protocols, but optimiza-
tion for fast startup is intentionally outside the scope of
this paper because it is a largely separate problem.

4.4 Flexiblity of PCC: An Example
In this section, we show a unique feature of PCC: ex-
pressing different data transfer objectives by using dif-
ferent utility functions. Because TCP is blind to the ap-
plication’s objective, a deep buffer (bufferbloat) is good
for throughput-hungry applications but will build up long
latency that kills performance of interactive applications.
AQMs like CoDel [41] limits the queue to maintain low
latency but degrades throughput. To cater to different
applications’ objective with TCP running on end hosts,
it has been argued that programmable AQMs are needed
in the network [47]. However, PCC can accomplish this
with simple per-flow fair queuing (FQ). We only eval-
uate this feature in a per-flow fair queueing (FQ) envi-
ronment; with a FIFO queue, the utility function may
(or may not) affect dynamics and we leave that to fu-
ture work. Borrowing the evaluation scenario from [47],
an interactive flow is defined as a long-running flow that
has the objective of maximizing its throughput-delay ra-
tio, called the power. To make our point, we show that
PCC + Bufferbloat + FQ has the same power for interac-
tive flows as PCC + CoDel + FQ, and both have higher
power than TCP + CoDel + FQ.

We set up a transmission pair on Emulab with 40Mbps
bandwidth and 20ms RTT link running a CoDel imple-
mentation [4] with AQM parameters set to their default
values. With TCP CUBIC and two simultaneous interac-
tive flows, TCP + CoDel + FQ achieves 493.8Mbit/s2,
which is 10.5× more power than TCP + Bufferbloat +
FQ (46.8Mbit/s2).

For PCC, we use the following utility function mod-
ified from the default to express the objective of inter-
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active flows: ui(xi) = (Ti · Sigmoid(Li − 0.05) · RT Tn−1
RT Tn

−
xiLi)/RT Tn where RT Tn−1 and RT Tn are the average
RTT of the previous and current MIs, respectively. This
utility function expresses the objective of low latency
and avoiding latency increase. With this utility function,
we put PCC into the same test setting of TCP. Surpris-
ingly, PCC + Bufferbloat + FQ and PCC + CoDel + FQ
achieve essentially the same power for interactive flows
(772.8Mbit/s2 and 766.3Mbit/s2 respectively). This is
because PCC was able to keep buffers very small: we ob-
served no packet drop during the experiments even with
PCC + CoDel + FQ so PCC’s self-inflicted latency never
exceeded the latency threshold of CoDel. That is to say,
CoDel becomes useless when PCC is used in end-hosts.
Moreover, PCC + Bufferbloat + FQ achieves 55% higher
power than TCP + CoDel + FQ, indicating that even with
AQM, TCP is still suboptimal at realizing the applica-
tions’ transmission objective.

5 Related work
It has long been clear that TCP lacks enough informa-
tion, or the right information, to make optimal rate con-
trol decisions. XCP [35] and RCP [22] solved this by
using explicit feedback from the network to directly set
the sender’s rate. But this requires new protocols, router
hardware, and packet header formats, so deployment is
rare.

Numerous designs modify TCP, e.g. [23,31,38,52,55],
but fail to acheive consistent high performance, because
they still inherit TCP’s hardwired mapping architecture.
As we evaluated in § 4, they partially mitigate TCP’s
problems in the specially assumed network scenarios
but still suffer from performance degradation when their
assumptions are violated. As another example, FAST
TCP [52] uses prolonged latency as a congestion sig-
nal for high BDP connections. However, it models the
network queue in an ideal way and its performance de-
grades under RTT variance [21], incorrect estimation of
baseline RTT [49] and when competing with loss-based
TCP protocols.

The method of Remy and TAO [48, 54] pushes TCP’s
architecture to the extreme: it searches through a large
number of hardwired mappings under a network model
with assumed parameters, e.g. number of senders, link
speed, etc., and finds the best protocol under that sim-
ulated scenario. However, like all TCP variants, when
the real network deviates from Remy’s input assumption,
performance degrades [48]. Moreover, random loss and
many more real network “parameters” are not considered
in Remy’s network model and the effects are unclear.

Works such as PCP [20] and Packet Pair Flow Con-
trol [37] utilize techniques like packet-trains [33] to
probe available bandwidth in the network. However,
bandwidth probing protocols do not observe real perfor-

mance like PCC does and make unreliable assumptions
about the network. For example, real networks can easily
violate the assumptions about packet inter-arrival latency
embedded in BP (e.g. latency jitter due to middleboxes,
software routers or virtualization layers), rendering in-
correct estimates that harm performance.

Several past works also explicitly quantify utility.
Analysis of congestion control as a global optimiza-
tion [36, 40] implemented by a distributed protocol is
not under the same framework as our analysis, which de-
fines a utility function and finds the global Nash equi-
librium. Other work explicitly defines a utility func-
tion for a congestion control protocol, either local [19]
or global [48, 54]. However, the resulting control algo-
rithms are still TCP-like hardwired mappings, whereas
each PCC sender optimizes utility using a learning algo-
rithm that obtains direct experimental evidence of how
sending rate affects utility. Take Remy and TAO again
as an example: there is a global optimization goal, used
to guide the choice of protocol; but at the end of day the
senders use hardwired control to attempt to optimize for
that goal, which can fail when those assumptions are vi-
olated and moreover, one has to change the hardwired
mapping if the goal changes.

6 Conclusion
This paper made the case that Performance-oriented
Congestion Control, in which senders control their rate
based on direct experimental evidence of the connection
between their actions and performance, offers a promis-
ing new architecture to achieve consistent high perfor-
mance. Within this architecture, many questions re-
main. One major area is in the choice of utility func-
tion: Is there a utility function that provably converges
to a Nash equilibrium while being TCP friendly? Does
a utility function which incorporates latency—clearly
a generally-desirable objective—provably converge and
experimentally perform as well as the default utility
function used in most of our evaluation? More practi-
cally, our (userspace, UDP-based) prototype software en-
counters problems with accurate packet pacing and han-
dling many flows as it scales.
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[38] S. Liu, T. Başar, and R. Srikant. TCP-Illinois: A
loss-and delay-based congestion control algorithm
for high-speed networks. Performance Evaluation,
2008.

[39] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and
R. Wang. TCP Westwood: bandwidth estimation
for enhanced transport over wireless links. Proc.
ACM Mobicom, July 2001.

[40] J. Mo and J. Walrand. Fair end-to-end window-
based congestion control. IEEE/ACM Transactions
on Networking (ToN), 2000.

[41] K. Nichols and V. Jacobson. Controlling queue de-
lay. Communications of the ACM, 2012.

[42] H. Obata, K. Tamehiro, and K. Ishida. Experi-
mental evaluation of TCP-STAR for satellite Inter-
net over WINDS. Proc. Autonomous Decentralized
Systems (ISADS), June 2011.

[43] L. Popa, G. Kumar, M. Chowdhury, A. Krishna-
murthy, S. Ratnasamy, and I. Stoica. Faircloud:
Sharing the network in cloud computing. Proc.
ACM SIGCOMM, August 2012.

[44] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul,
Y. Turner, and J. R. Santos. ElasticSwitch: practical

[44] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul,
Y. Turner, and J. R. Santos. ElasticSwitch: practical
work-conserving bandwidth guarantees for cloud
computing. Proc. ACM SIGCOMM, August 2013.

[45] R. Prasad, C. Dovrolis, and M. Thottan. Router
buffer sizing revisited: the role of the output/input
capacity ratio. Proc. CoNEXT, December 2007.

[46] J. Rosen. Existence and uniqueness of equilibrium
point for concave n-person games. Econometrica,
1965.

[47] A. Sivaraman, K. Winstein, S. Subramanian, and
H. Balakrishnan. No silver bullet: extending SDN
to the data plane. Proc. HotNets, July 2013.

[48] A. Sivaraman, K. Winstein, P. Thaker, and H. Bal-
akrishnan. An experimental study of the learnabil-
ity of congestion control. Proc. ACM SIGCOMM,
August 2014.

[49] L. Tan, C. Yuan, and M. Zukerman. FAST TCP:
Fairness and queuing issues. IEEE Communication
Letter, August 2005.

[50] VSAT Systems. TCP/IP protocol and other applica-
tions over satellite. http://goo.gl/E6q6Yf.

[51] G. Vu-Brugier, R. Stanojevic, D. J. Leith, and
R. Shorten. A critique of recently proposed buffer-
sizing strategies. ACM Computer Communication
Review, 2007.

[52] D. Wei, C. Jin, S. Low, and S. Hegde. Fast tcp:
motivation, architecture, algorithms, performance.
IEEE/ACM Transactions on Networking, 2006.

[53] B. White, J. Lepreau, L. Stoller, R. Ricci, G. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environ-
ment for distributed systems and networks. Proc.
OSDI, December 2002.

[54] K. Winstein and H. Balakrishnan. TCP ex Machina:
computer-generated congestion control. Proc.
ACM SIGCOMM, August 2013.

[55] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: In-
cast congestion control for TCP in data center net-

works. Proc. CoNEXT, November 2010.

14




