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ABSTRACT
Contrary to the "classic" Internet architecture familiar to most peo-
ple, today’s Internet is a composition of a wide variety of networks.
The IP protocol suite offers a general-purpose network design with
a widely available implementation; as such, it is re-used to design
and implement networks with many different purposes. Compo-
sitional architecture explains how, despite the fact that IP has not
changed significantly since 1993, the Internet has evolved to meet
many new requirements and challenges since then. In this paper
we argue that understanding and modeling network composition
is the key to continued evolution of the Internet, and to meeting
society’s demands for Internet services that can be verified to meet
their requirements, particularly for security and reliability. We first
define networks, requirements on network services, and bottom-up
reasoning that a network meets its service requirements. Next we
define the composition operators of layering and bridging. Rich ex-
amples from everyday networking not only illustrate the operators,
but also show reasoning across a composition hierarchy. In conclu-
sion, we show how a shift toward more explicit use of composition
would greatly enhance our ability to make the Internet better.
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1 INTRODUCTION
In 1993, the explosive growth of the World Wide Web began. The
architecture of the Internet was commonly described as having four
layers above the physical links, each providing a distinct function:
a link layer providing best-effort local packet delivery, a network
layer providing best-effort global packet delivery (and character-
ized by the Internet Protocol or IP), a transport layer providing
communication services such as reliable byte streams (TCP) and
message service (UDP), and an application layer. 1993 was also the
year of the last major change to this “classic” Internet architecture,
for reasons eloquently explained by Handley [10].
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Figure 1: Headers of a typical packet in the AT&T backbone
network. Headers lower in the diagram are outermost in the
actual packet.

A lot has happened in the world since 1993. The overwhelming
success of the Internet has created many new uses and challenges
that were not anticipated by its original architecture:

• Today, most networked devices are mobile.
• There has been an explosion of security threats.
• Most of the world’s telecommunication infrastructure and
entertainment distribution has moved to the Internet.

• Cloud computing was invented to help enterprises manage
the massive computing resources they now need.

• The IPv4 32-bit address space has been exhausted, and IPv6
has not yet taken over the bulk of Internet traffic.

• In a deregulated, competitive world, network providers con-
trol costs by allocating resources dynamically, rather than
provisioning networks with static resources for peak loads.

Here is a conundrum. The Internet is meeting these new challenges
to some extent, yet neither the IP protocol suite nor the way that
experts describe the Internet has changed significantly since 1993.
How can this be?

In this paper we will show that today’s Internet is better de-
scribed as a composition of many networks. These networks vary
wildly in their purposes, their geographical spans, their levels of
abstraction, and their internal designs. At the same time, each net-
work is a microcosm with the potential to contain all of a network’s
basic working parts and functions. All networks have fundamental
similarities, and in particular similar interfaces that allow them to
be composed. The IP protocol suite retains its primacy simply as

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Pamela Zave and Jennifer Rexford

software that can be found onmost networked devices, and can thus
be re-used in the design and implementation of many networks.

Evidence of composition is easy to find. Figure 1 shows the head-
ers of a typical packet in the AT&T backbone [13]. The headers
tell us that this packet is being sent by a distributed Web-based
application system. It is being transmitted by a layered composition
of six networks, the topmost of which is called the “observable
Internet” because it is the IP network that the application interacts
with. Below it, a VPN provides secure service over public links.
A GPRS network implements cellular data service. Two layered
MPLS networks allocate backbone resources by sending the packet
over selected paths at different levels of abstraction. An Ethernet
network transmits the packet within a local area. The IP protocols
and implementation software are used to build three of these net-
works. In the classic Internet architecture, nothing between the
“observable Internet” and the Ethernet would exist.

The onslaught of new challenges is not over. The consequences
of cyberattacks are worsening as the world’s infrastructure be-
comes more heavily networked. Real-time Internet applications
are increasing, including safety-critical ones such as medical ap-
plications and self-driving cars. Based on current projections, the
Internet of Things will increase the number of networked devices
by a factor of 25, while mobile access must be provided at 1/25th
the current cost of cellular service.

In this paper we will argue for the critical importance of un-
derstanding composition as a foundation of network architecture.
On an intellectual level, composition is indisputably present, and
ignoring it will frustrate attempts to describe or generalize network
architectures with any precision or utility. Moreover, there are two
extremely important practical issues for which understanding of
composition is essential.

Interoperation and evolution: In response to current prob-
lems and forecasts of worse ones, many researchers have inves-
tigated “future Internet architectures” that aim to eliminate the
weaknesses of the current Internet with a “clean slate” approach
based on new technology, particularly for security [7, 8]. These
thought experiments encourage innovation, but there will be no
opportunity to shut down the current Internet and start up a new
one. New solutions to problems must interoperate with the current
Internet; eventually successful designs will be used more widely,
and the Internet will evolve. In this paper we will show that the key
technology for interoperation and evolution is composition of net-
works. By understanding and formalizing the interfaces between
composed networks, we can encourage the design of networks that
are easily composed. This will expand the design space for effective
and efficient problem solutions that can actually be deployed. It will
also help to bridge the artificial and unproductive divide between
networking and distributed systems [12].

Requirements on communication services: Practically ev-
ery issue of CACM contains a warning about the risks of rapidly
increasing automation, because software systems are too complex
for people to understand or control, and too complex to make re-
liable. Networks are a central part of the growth of automation,
and there will be increasing pressure to define requirements on
communication services and to verify that they are satisfied. As we
will show in this paper, the formal framework for composition is

exactly the formal framework needed to specify and verify network
requirements. It supports both top-down and bottom-up composi-
tional reasoning. Without it, the nascent research area of network
verification can help network providers manage their networks,
but cannot give the public trustworthy Internet services.

A note on terminology: The terminology in common use for
networking is based on the classic Internet architecture. It is a
barrier to understanding because it is inherently ambiguous in
today’s Internet. Our ambition is to define terms unambiguously
and use them precisely, which first requires choosing the terms
we will use. We have chosen common and intuitive terms, which
although heavily overloaded in practice, should be interpreted here
as meaning only and exactly what they are defined as.

2 WHAT IS A NETWORK?
2.1 A top-down view
The users of networks are distributed application systems—computer
systems with operational modules spread across different physical
machines. The modules of a distributed system need a network to
communicate.

Each module using a network must have running on its machine
a member of that network. The network member is a software
(and possibly hardware) module that participates in the network.
Application modules and network members on the same machine
communicate with each other through the fast, reliable operating
system of the machine—in contrast to the slower, faultier communi-
cation between machines. Both app modules and network members
have names, in the namespaces of the app system and network,
respectively.

The network offers to its users one or more communication
services. An instance or usage of a service is a session. A packet
is a transmissible unit of data. In each session, a group of related
packets from an app sender is delivered to an app receiver. So the
basic user interface to the network is that the sender has action
send (packet, session) to send a packet in a session, and the network
has action deliver (packet, session) to deliver a packet to the receiver.

A distributed system imposes requirements on the network ser-
vices it is using. These properties or constraints are defined in terms
of the using distributed system, not the network (later we will see
why). There are four common categories of requirement:

• Reachability requirements specify which receivers a member
can send packets to.

• Performance requirements specify quantities such as maxi-
mum latency, minimum bandwidth, and maximum packet
loss rate.

• Behavioral requirements are more service-specific. For exam-
ple, TCP service requires a pair of sessions, where the sender
of one is the receiver of the other. It guarantees reliable, FIFO
delivery of a byte stream in either direction.

• Security requirements are diverse. For example, access con-
trol is the negation of reachability. Denial-of-service pro-
tection is a kind of access control in which the bad senders
are identified by volume, packet contents, and other traffic
characteristics rather than by name. If a service includes
authentication, then packets must be sent by the sender
named when the session is set up. If the service has privacy
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and data integrity, then no packets are read or modified by
unauthorized parties while in the network.

2.2 A bottom-up view
The parts of a network are members and links. As defined above,
members are named modules on participating machines. The state
of the network is distributed across its members. A link is a commu-
nication channel that accepts packets from a sender (member) and
delivers them to a receiver (member).1 Many links are “best-effort”
channels, which means we can only say formally that they deliver
a packet within some latency t , with some probability r .

A network has two principal activities or functions, which are
its forwarding protocol and its session protocols. The following de-
scriptions of them are intended to apply to all networks. They do
not cover every aspect of networking, but they do cover enough to
explain how networks compose.

A fully-connected network has a link from each member to every
other member. Most networks are not fully connected, but packets
can reach their destinations over paths of multiple links. In these
networks, when a member receives a packet that is not destined for
it, the member forwards the packet toward its ultimate destination.
We use the word forwarder for a member whose primary or sole
purpose is to forward, rather than words like “router” or “switch”
with many specialized connotations.

The network’s forwarding protocol is a set of conventions that
govern headers on packets, forwarding state in members, and how
members use the forwarding state to handle received packets. More
specifically, each member has a local mapping from headerPattern
and inLink to outLink, where headerPattern matches some subset
of packet headers, and inLink and outLink are local identifiers for
the links of that member. The mapping tells the member that on
receiving a packet on incoming link inLink whose header matches
headerPattern, it should forward the packet onto outgoing link
outLink. To select an outLink for packets originating at the member,
a distinguished value self can be used as the “incoming link.” The
mapping can also tell the member, explicitly or implicitly, to drop
the packet. Most commonly the mapping is realized by entries in
a table, but it can also be realized with some computation, which
allows the use of more information from the header.

A session protocol is a set of conventions governing the packet
format, packet sequence, member state, and member actions used
to implement a service according to its requirements. A network
has a session protocol for every service that it offers.

Each packet in a session has a header, which must contain at
least the source, destination, and session identifier.2 The source and
destination are the names of the members serving as endpoints of
the session, as shown in Figure 2. The session identifier is chosen so
that the header uniquely identifies the session. The header format
of a session protocol is a specialization of its network’s forwarding
format, so a header format must conform to both.

Session state is stored in both endpoints, and possibly other
members (called middleboxes) in the path of the session packets.
When a sender executes send (packet, sessIdent), the source member

1Although the theory allows one-to-many sessions and links, they are omitted for
simplicity.
2It may also need an identifier of the session protocol, if there is more than one.

sender receiver

source destination

send (packet, sessIdent) deliver (packet, sessIdent)
NETWORK

sessIdent of type session

link

member

Figure 2: Packets of a session are forwarded from source to
destination endpoints. The unique identifier sessIdent indi-
cates which packets belong to this group.

gets the packet, disassembles it into smaller packets if necessary for
the network, encapsulates each packet in the session header, and
sends them out on its links. When a destination receives session
packets from its links, it decapsulates them by removing the session
headers, assembles them into larger packets if required for the
service, and executes deliver (packet, sessIdent) to transfer the packet
to the receiver. In addition, endpoint members and middleboxes
can perform other actions as defined by the session protocol.

A network has a single administrative authority, which is re-
sponsible for meeting the network’s requirements. The administra-
tive authority provides resources, particularly links and controlled
members. The network can also have free members that are not
controlled by the authority; typically these are the endpoints of
sessions, located on the machines of network users.

The distinction between controlled and free members makes a
crude start on a trust model that can be used to reason rigorously
about security. For example, for protecting the resources of the
network, only controlled members can be trusted. For protecting
a session, the controlled members and session endpoints can be
trusted, but no others. On a global scale, it will be necessary for the
administrative authorities of networks to distinguish which other
networks they can trust [2].

Packet processing in a network includes its forwarding protocol,
its session protocols, and the creation and destruction of on-demand
sessions and links (see §5). Most networks also have control func-
tions, provided by their administrative authorities to configure and
manage the states of controlled members. Typically controlled mem-
bers provide status information to the control function, and the
control function adjusts state such as forwarding state according
to current conditions. It is important to note that separation and
composition of networks are, so far, defined on their packet pro-
cessing only. We do not yet know to what extent control functions
are modular like packet processing is, and to what extent they must
be intertwined for effective optimization.

2.3 Reasoning between top and bottom
Reasoning about a network should be self-contained. The goal
is to combine knowledge of the network design and resources
with knowledge or assumptions about its link properties, and to
reason upward that the network satisfies its service requirements.
To achieve this goal, however, it is necessary to have two kinds of
information from the top.
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Figure 3: The architecture of a campus network. In this pic-
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links. All network members on the same machine are the
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The first kind of top-down information is critical for packet
processing as well as for reasoning. For each distributed system
that uses the network, there should be a directory mapping names
of app modules to the names of the network members that they use
to communicate. Consider, for example, how Web services use the
Internet. A Web request is sent from a sender (client)C to a receiver
(server) S , which is an app module having a domain name. For an
IP network to implement this communication, it must discover the
network name (IP address) of S , which will be the destination of the
TCP session carrying the request. DNS is the directory providing
this information.3

Secondly, there should be knowledge or assumptions about the
load of sent packets, not just from one distributed system, but from
all of those that use the network. A typical load characterization is
a traffic matrix, with an expected packet rate from each member
as a source to each member as a destination. Most of the theory of
networking so far concerns how to reason about the relationships
among network topology, link properties, load characterization,
and observed path performance, so reasoning about performance
properties has a good foundation.

The remainder of this paper defines compositional architecture
and uses examples to show the value of thinking compositionally.
Many everyday uses of networking are complex, subtle, and confus-
ing, even to most practitioners, yet the model enables us to explain
them precisely. We also show how bottom-up reasoning can be
used to satisfy service requirements of all four types introduced in
§2.1.

3 NETWORK COMPOSITION BY LAYERING
Layering is a composition operator in which some links of a network
are implemented by sessions of another network. In other words,
the overlay network is one of the using distributed systems—in this
case not an app system—of the underlay network. In Figure 1, every
network except the “observable Internet” is an underlay in this
sense, and every network except the Ethernet is an overlay. Layering
is conceptually very simple, because all the groundwork has already
3Because Web services never inititate sessions to clients, client Web modules do not
need explicit names.

been laid. The overlay network is a using distributed system, which
is where requirements are defined, so the properties of its links
are the requirements on the underlay service. Reasoning that the
underlay network satisfies its requirements supports reasoning that
the overlay network satisfies its requirements.

For a link of one network to be implemented by an underlay
network, both endpoints of the link must be attached to or located
atmembers of the underlay. The attached members are on the same
machine, and communicate through the operating system of the
machine. The directory of the underlay network maps names of
attached members to names of their attachments. In Figure 3, mem-
bers 2.7 and 2.8 of the topmost network are attached to members
M7 and M8, respectively, of the middle network. If a network is
used by several others with overlapping name spaces, the directory
entries will also need network names for disambiguation.

As a second example of what layering can do, Figure 3 shows a
common architecture for a campus network [15]. At the top level,
there is an IP network with private IP addresses in the prefix range
192.168/16 (henceforth we will show only suffixes of this prefix).
For security and management purposes, the user machines are
partitioned into groups for administrators, departments, students,
etc. (only two are shown). These groups are allocated different
ranges of suffix space. The IP network also includes routers such
as 0.4 and 0.5. In the figure we show the virtual IP links needed for
communication paths between 1.3 and 2.6, and 2.7 and 2.8.

At the middle level of the figure, there is a Virtual Local Area
Network (VLAN) for each group (only one VLAN is shown). Each
user machine has a member in one VLAN, while the IP routers can
have members in multiple VLANs. In VLANs the names of members
are the MAC addresses of their machines, indicated mnemonically
to match IP addresses.

The principle of this architecture is that all VLANs are completely
isolated, so machines can communicate across group boundaries
only through the IP network. There are several reasons for this
principle, but the relevant one is that groups are defined for security,
and its IP address is the only way to tell which group a user machine
belongs to. Therefore security rules must be enforced by the IP
network, and all IP paths across group boundaries must go through
an IP router.

In a VLAN, the IP routers are fully connected by links, and
each user machine is linked to its nearest (see below) IP router. So
the links between 2.7 and 2.8 are implemented by VLAN sessions
between M7 and M8. The links between 0.5 and 2.6 are also imple-
mented by sessions in the administrators’ VLAN, while the links
between 1.3 and 0.5 are implemented by sessions in the students’
VLAN.

At the bottom level of the figure, each user machine is a member
of a physical LAN for the area of campus in which it is located.
Each LAN contains switches that are not members of higher-level
networks. A member of any VLAN can be located in any LAN.
A LAN does not need a directory, because its members and their
corresponding overlay (VLAN) members have the same names.

Each VLAN link between a user machine and its nearest IP
router is implemented by a LAN. Packets in the LAN require two
Ethernet headers (as well as an IP header). To see why, consider
the packets being transmitted on the virtual IP link from 2.7 to 2.8.
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Their inner Ethernet header, which belongs to the VLAN, labels
them as traveling in a session with source M7 and destination M8.
Their first outer Ethernet header, which belongs to the LAN on
the left, labels them as traveling in a session with source M7 and
destination M4. Later the same packets, when traveling through the
LAN on the right, will have outer Ethernet headers labeling them
as traveling in a session with source M5 and destination M8. In
both LANs the outer Ethernet headers will have VLAN tags, which
identify the overlay the packets belong to (see §5).

VLAN links between IP routers are implemented by cross-campus
high-speed links. These links belong only to the campus IP net-
work; in the figure the IP network appears twice, at the top with
its relevant virtual links shown, and at the bottom with its relevant
physical links shown. VLAN packets with source M7 and desti-
nation M8 will be encapsulated in an IP header with source 0.4
and destination 0.5 to traverse the physical link in the IP network
(these IP-in-Ethernet-in-IP packets are in the “VXLAN” format).
Note that these packets will not trigger security functions in 0.5
because, being destined for 0.5, they are not entering a group. We
can see this is correct, because in fact the entire communication
path lies within the admin group and VLAN.

This example shows that a directed graph of the layering relation
on networks will sometimes have cycles, particularly where an IP
network is layered on itself (here the IP network uses itself through
VLAN intermediaries). For a more precise and useful relation, we
can define layering on links in networks. In this relation, some
virtual links in the IP network are layered on physical links in the
IP network, but no IP link is layered on itself, and the relation is
hierarchical (i.e., acyclic).

Now we consider requirements on this architecture. We might
wish to understand the consequences for reachability of the failure
of one pair of physical links, between M5 and M9 in the LAN on the
right. Based on analysis of the lowest level of Figure 3, we would
conclude that the user machines with MAC addresses M3 and M6
could still reach each other. This conclusion would be incorrect.
The outage would break the links between M5 and M6 in the admin
VLAN, and betweenM5 andM3 in the student VLAN. This would, in
turn, break the links between 1.3, 0.5 and 0.5, 2.6 in the IP network.

In general, the campus network will have access-control rules for
packets from/to any pair of groups. These rules must be installed
in IP routers. We might wish to install the minimal number of rules
in each router, yet verify for security that every packet from one
group to another goes through a router with the access-control
rules for that from/to pair. Reasoning from the bottom up, virtual
links in the VLANs are abstractions of packet transmission in the
LANs, so it is sufficient to reason about VLANs. Each user machine
is a member of one VLAN, where it has links to a single IP router.
So security for packets from group F to group T can be verified if
its access-control rules are installed in all routers R such that the
MAC address of R is in VLAN F .

In response to the reachability problem above, networkmanagers
might install a backup link between M9 and another IP router 0.11
with MAC address M11. In this case M11 would also appear in the
admin VLAN, and the rule above would remind the managers to
install access-control rules for the admin group in M11.

4 NETWORK COMPOSITION BY BRIDGING
Bridging is a composition operator in which sessions or a service are
implemented by a set of networks at the same level of abstraction.
With bridging, the two endpoints of a session can be members of
different networks.

There are several variations on bridging, depending on how
much structure the bridged networks share. In the simplest case
there are two networks with identical namespaces and protocols,
such that there are some machines having a member that belongs
to both networks. These shared or bridging members can forward
packets from one network to the other. Provided that the names of
all network members are unique across both networks,4 and that
members of both networks have access to the directory of the other,
little changes except that the reach of both networks is extended.
Because sessions span bridged networks, they can implement a
service jointly.

The public Internet is a large set of IP networks composed by
bridging. A network can be bridged with more than one network,
and the extension of reachability provided by bridging can be tran-
sitive across chains of networks. In this case the main significance
of composition is that each of the contributing networks can have
a different administrative authority. When two networks with dif-
ferent authorities are bridged, most commonly a shared member is
controlled in one network and free in the other.

In other cases, bridged networks are less similar. They may have
different or overlapping name spaces. They may have different ses-
sion protocols. In these cases bridging can still be effective, with
the addition of compound sessions. A compound session is simply a
session in which there is at least one middlebox acting as a join-
box. The joinbox serves as a destination for one simple session
and a source for another simple session, and maintains state that
associates the two simple sessions so that packets received by the
joinbox as a destination are then sent by the joinbox as a source.

By far the most familiar compound sessions are those whose
joinboxes are Network Address Translators (NATs) as in the lower
level of Figure 4. NATs are joinboxes for sessions set up in in bidirec-
tional pairs, usually for TCP service. The session pair in the figure
is initiated by X in the private IP network on the left. Since the
NAT is controlled by the private IP network and free in the public
IP network on the right, it can also serve as a firewall protecting
the private network from unsolicited packets. In this figure, the
gray box represents the public Internet as one network, ignoring
the fact that it is really a bridging of many networks.

It has been a long time since there has been enough room in the
IPv4 32-bit name space to give every networked machine a unique
name. Outright exhaustion of the name space has been delayed by
the fact that most private networks re-use the same set of private
IP addresses. The cost of this strategy is that private IP addresses
are ambiguous except in their local context, and a machine with a
private address cannot be reached from outside its local network
except with a compound session.

This is the purpose of the compound sessions in Figure 4. The
first session is initiated from the private address X , to public ad-
dress G. When the NAT receives the session-initiating packet, it
alters it before forwarding, thus making an outgoing session with

4A bridging member can have one name, or a different name in each network.
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its own public name N as the source. When G accepts this session
and initiates a session in the reverse direction, it uses reachable N
as the destination rather than unreachable X . Because the session-
initiation packet in the reverse direction includes the session iden-
tifier from the forward direction, the NAT can match the reverse
session-initiation packet with the compound session in the for-
ward direction. With this information, it can continue the reverse
compound session by initiating a simple session to X .

Figure 4 as a whole shows how an employee using a WiFi net-
work in a coffee shop can access a compute server at his workplace—
two private networks communicating through the public Internet.
First, the user must connect to a Virtual Private Network (VPN)
server in the private IP network of his enterprise, which is done by
contacting gateway G from his temporary address X in the coffee
shop. The VPN server authenticates the user’s laptop and gives it
temporary address U in the enterprise network. U and V then set
up an encrypted link implemented by an IPsec session between X
and G (other links are not shown).U andW are now both members
of the private enterprise network, and can communicate freely.

Concerning reasoning about requirements, the fact that the
user’s laptop can reach the enterprise compute server is predicated
on the facts that X and G can reach each other through compound
sessions, andU can reach V through a dynamically created virtual
link in an IP network.

There is an interesting problem here with a behavioral require-
ment. For the link betweenU and V to satisfy its security require-
ments, IPsec must be able to behave as designed. This is tricky
because most NATs are only designed to admit TCP and UDP as
IP session protocols. IPsec cannot masquerade as either of them
because its session identifiers are quite different (the workaround
is to encapsulate IPsec packets in UDP packets). If the Internet had
been designed for composition, all IP packets would have a common
format for the session identifier, because session identifiers play
a key role in composition—and security—that is independent of
particular session protocols.

5 EVOLUTION BY LAYERING
Layering is an obvious way to introduce networks with clean-slate
designs (e.g., [1, 14, 18]) to the Internet, so that the Internet can

senderLinkIdent receiverLinkIdentsource
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source’ destination’
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sessIdent

implements (sessIdent’, A, receiverLinkIdent)

destination
receiver

uses (senderLinkIdent, B, sessIdent’)
forwarding ( header(sessIdent), self, senderLinkIdent)

Network A

Network B

Figure 5: Network state (in blue, near the member where it
is stored) for a link implemented in an underlay network.

evolve toward whichever proposals are most successful. Layering
requires extra state in members to associate overlay links with
underlay sessions. Figure 5 illustrates a general-purpose model for
layering state.

Often virtual (overlay) links are transient or dynamic, just as
sessions are. For example, in Figure 4, the encrypted link is created
on user demand. Setting up a dynamic link to carry packets of
the session sessIdent in Figure 5 proceeds as follows. The source
of sessIdent is the same as the sender of the dynamic link. In the
course of link setup, sender calls user-interface function createSes-
sion (B, receiver) to create a session in Network B. Its member in B,
source’, executes this function by looking up (B, receiver) in its direc-
tory, finding its attachment or location destination’, and sending a
session-initiation packet to it. source’ also returns the new identifier
sessIdent’ to sender, which can now store the uses tuple so it knows
where to send packets outgoing on the link. Note that the link has a
unique local identifier at each endpoint. Note also that sender adds
a tuple forwarding (header(sessionIdent), self, senderLinkIdent) to its
forwarding rules.

The header of the session-initiation packet contains a fourth
required field overlay containing A (compare to §2.2), because it
is the network being served by the session. When destination’ re-
ceives the session-initiation packet, it calls user-interface function
createLink (A), which receiver executes by setting up incoming link
receiverLinkIdent. receiver returns the new identifier receiverLinkI-
dent to destination’, which stores it in the implements tuple so that
it knows where to deliver packets received in session sessionIdent’.
This is all the detail needed for composition, even though the ses-
sion protocol may also entail acceptance, acknowledgment, etc.

Layering is heavily used in cloud computing. Often each cloud
tenant has its own private IP network with its own copy of the
private IP address space. Members of a tenant’s network are virtual
machines. At the physical level, the resources of a virtualizable
machine are divided into slots, where each slot is a member of a
network implemented in hardware and software. Slots are allocated
dynamically to tenant networks, which means that each virtual
machine is attached to or located at a slot.

Explicit layering state can be valuable for sharing the resources
of the physical network among the tenant networks, as in [16]. In
this proposal, a tenant network can dynamically request virtual
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machines and virtual links, where the links can have bandwidth
and latency requirements. A virtual link is implemented by a path
through the physical network, on which each physical link must
have capacity reserved for the virtual link.

Referring back to Figure 5, session sessIdent’ is an explicit, named
abstraction for the network path shown passing through three in-
termediate members. To reason (within the cloud’s physical net-
work) about the bandwidth of sessIdent’, we take the minimum
over the path links of the bandwidths allocated to sessIdent’; this
will tell us whether the session satisfies the minimum-bandwidth
requirement of the virtual link. Reasoning about maximum-latency
requirements is similar, except that we sum the latencies of the
links on the path. Reasoning that the resources of the cloud have
been allocated safely is a matter of determining which sessions
share each link, and checking that their reserved capacities do not
exceed the capacity of the link.

Layering has other uses in clouds besides resource allocation.
In VL2 [9], layering is used to make virtual machines mobile (a
virtual machine can be located anywhere in a data center) and to
implement a customized routing scheme. In CloudNaaS [3], it is
used to provide customers with services by means of middleboxes
inserted in paths through the cloud. In SIMPL, where middleboxes
are inserted in paths using forwarding rules, it is used to reduce
the number of forwarding rules in central network elements [11].

6 INTEROPERATION BY BRIDGING
Mobility is a network service that preserves reachability to a mem-
ber, and preserves the member’s ongoing sessions, even though the
member is moving and its connection to the network is changing.
According to this strong definition, the only mobility service most
people experience at present is cellular voice service.

Mobility is intrinsically difficult to implement in the Internet.
Internet names (IP addresses) are allocated hierarchically, where
the hierarchy is based on geographical, topological, and administra-
tive proximity. The address hierarchy allows aggregated routing, in
which an entry in a forwarding table suffices for a (large) range of
IP addresses, and this is how the Internet works at global scale. Mo-
bility creates individual, dynamic exceptions to aggregated routing,
as a mobile device can connect to the Internet through a network
where its own IP address does not belong in the network’s address
range. In cellular service, these dynamic exceptions are confined to
networks owned by the cellular provider, but the implementation
is still neither simple nor cheap.

Fortunately, there are other ways to implement mobility. With
the help of the model of network composition, we were able to
discover that all mobility schemes fit into exactly two patterns [17].
Cellular mobility is an instance of “dynamic routing” mobility, be-
cause individual rules in forwarding tables are updated as a mobile
device moves. In the other pattern, mobile devices are members
of a network in which they have identifiers (persistent names) by
which they can always be reached. This network is layered on top of
another network—in practice always an IP network—in which mo-
bile devices have members with normal location-dependent names
called locators. As a mobile device moves, its overlay member stays
the same, but its underlay member changes its name in accordance
with its new location. Because the far end of an underlay session
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Figure 6: The interoperation of session-location mobility
with the public Internet.

often learns of new locations through the session protocol, we have
called this pattern “session-location” mobility.

LISP Mobile Node [5, 6] is an implementation of session-location
mobility that interoperates well with the public Internet, as shown
in Figure 6. At the top level of this figure, the public Internet is
bridged with a LISP-MN network, which is a specialized IP network.
Because of the bridging, a legacy host with IP address addr1 has been
able to initiate a TCP session with a mobile node whose identifier
is IP address ident2. As in §4, the public Internet is colored gray and
depicted as if it were one network.

In the figure, each link (solid line), UDP session (dashed line), or
path of links and forwarders (solid line broken with dots) is labeled
above with the source address of the packets traveling on it, and
labeled below with the destination address of these packets. These
labels show that the two middleboxes (addr3 and addr4) doing the
bridging are not joinboxes and the TCP session is not a compound
session, as the addresses are the same along each end-to-end path.
These middleboxes belong to the LISP-MN network.

The LISP network owns a range of IP addresses, from which
ident2 is drawn. The LISP network also has a directory mapping
identifiers of mobile nodes to their current locations. The middlebox
at addr3 is one of many belonging to the LISP-MN network that
advertise the mobile range of IP addresses into the public Internet,
which means that each packet destined for an address in this range
will be forwarded to one of them. When such a middlebox receives
its first packet for ident2 (at least, first in a long time), it gets ident2’s
location loc2 from the directory, creates a dynamic link to ident2,
and forwards the packet on it. Subsequent packets to ident2 use the
same link. The LISP network is layered on top of the public Internet,
so that dynamic LISP links are implemented by public UDP sessions
as shown in the figure. When a mobile node changes its location, it
notifies all themiddleboxes withwhich it is communicating through
UDP, and also updates the directory.

Packets from ident2 to addr1 also use a virtual LISP link, because
the mobile node might be located in a subnetwork where packets
with source address ident2 would be considered fraudulent. A lo-
cator, on the other hand, is always drawn from the local address



Conference’17, July 2017, Washington, DC, USA Pamela Zave and Jennifer Rexford

range. So the virtual link from ident2 is implemented with UDP
packets from loc2 to addr4, which is a middlebox located where
packets with source ident2 can be transmitted.

The main requirement on LISP Mobile Node is that communi-
cation with legacy hosts should perform almost as well as normal
Internet service. This requirement will be difficult to satisfy if the
middleboxes are far away from both endpoints, so that packets
between them must travel on elongated paths. The key is to scatter
LISP-MN middleboxes geographically. Then packets going to a mo-
bile node will be forwarded to whichever middlebox is closest to
the sender. A mobile node can send its packets to a middlebox near
to it. Thus in either direction packets go through a middlebox close
to their sender, and end-to-end paths are not elongated.

§1 introduced the concept of the observable Internet, which can
now be defined. Due to composition, the observable Internet can
differ from user session to user session. For each user session, the
observable Internet is the highest-level set of IP-based networks that,
bridged together, transmit packets of the session from end to end.
In Figure 6 the observable Internet is a bridging of the LISP-MN
network and the public Internet.

7 A NEW INTERNET STORY
For many people concerned with the future of the Internet, there is
a simple and somewhat depressing story. There is a single Internet
(not counting adminstrative boundaries), which cannot be replaced
because it is too much a part of civilization’s infrastructure. Because
it does not meet all current and projected requirements, we must
seek to add a never-ending list of new features to it. Because its
complexity is growing continually, we must work ever harder to
find ways to secure and verify it.

In this paper we have presented evidence that the true situation
is much different, and much more promising. In our story, the
IP protocol suite offers a general-purpose network design with a
widely available implementation; as such, it is re-used to design
and implement many networks. The Internet as we know it is a
vast collection of networks composed in a rich variety of ways by
layering and bridging, including being composed with themselves.

The Internet of our new story evolves by means of new net-
works and new compositions. These are easy to add locally (campus
networks, cloud computing) or at high levels of the composition
hierarchy (mobility, network virtualization, distributed systems).
They are slower to disseminate when both global and low in the
composition hierarchy (IPv6).

The difference between these stories is profound. Imagine the
consequences of acknowledging and studying the compositional
architecture of the Internet. Further, imagine the consequences of
a relatively minor shift to an Internet with the same architecture
as today’s, but with some explicit recognition, labeling, and use
of common structures of composition such as those presented in
this paper (these structures are all present today, but they are often
implicit, hidden, or idiosyncratic). This shifted Internet would bring
many benefits, including the following.

(1) On each networked machine there might be members of
many networks, including multiple IP networks. Each could be
designed and analyzed as a separate module (whether implemented
separately or not).

Members of the public Internet may be themost complex because
its links are sometimes layered on itself (often called “tunneling”).
Even in this case, composition could replace ad hoc packet process-
ing with uniform, analyzable operations such as those sketched out
in §5. Such operations could be organized by factors such as which
network is using the public Internet, and implemented by libraries
in software or programmable hardware.

(2) It would be easier to evolve the Internet through new net-
works and new compositions, because the emphasis on composition
would force networks to provide more robust and more general
interfaces.

(3) Required properties could be stated in a meaningful and valid
way. For example, reachability between the user laptop and compute
server in Figure 4 has little to do with reachability in the public
Internet.

(4) Verification would be performed hierarchically. Much of the
reasoning would be performed on networks that are highly spe-
cialized to enforce the properties that are expected of them, and
thus easy to verify. Explicit composition structures would tie the
layers together so that the verified properties of an underlay could
be assumed in an overlay.

(5) There are many consistency conditions that should hold
between networks composed with each other. For example, a path
in a virtual network (see §5) is available only if its links are available,
and these are implemented by paths in an underlay. With more
study, we could figure out how control functions could coordinate
changes to composed networks so that consistency conditions are
satisfied whenever it is possible to satisfy them.

(6) Networking is full of optimizations, and network compo-
sition would be no exception. Composition can be optimized by
removing redundant data, replacing encapsulation (which increases
header size) by rewriting (which does not), and many other trans-
formations. The difference is that, in the Internet of our imaginings,
pre-optimization information would be available for uniform and
efficient reasoning. Also, optimizations could be proved safe in the
context in which they are applied, and could thus be applied even
more widely than they are now.
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