
U.C. Berkeley — CS172: Automata, Computability and Complexity Handout 4
Professor Luca Trevisan 3/5/2015

Notes on Unprovable Statements

1 The Basic Idea

We prove that, in any formalization of mathematics which is sufficiently expressive to formalize
statements about Turing machines, there are either false statements that can be proved (meaning
that the formalism is inconsistent) or true statements that cannot be proved (meaning that the for-
malism is incomplete). This is Gödel’s first incompleteness theorem. Furthermore the consistency
of the formalism cannot proved within the formalism (Gödel’s second incompleteness theorem),
and the problem of checking whether a given statement has a proof is undecidable (the Entschei-
dungsproblem solved by Turing).

In the following a formalization of mathematics is a formal language to write mathematical
statements and mathematical proofs. We will be using interchangeably the terms “formalization
of mathematics,” “formal system” and “system.”

We begin with a very simple argument that contains all the main ideas that we will develop
later.

For every Turing machine M and string x, let SM,x be the statement that, in our formalism,
express the statement that M halts on input x, and let ¬SM,x be its negation. Then we can design
the following algorithm for the halting problem:

• Input: 〈M〉, x

• construct the statement SM,x

• for each string P in lexicographic order

– if P is a valid proof of SM,x then accept

– if P is a valid proof of ¬SM,x then reject

The algorithm correctly solves the halting problem provided that:

1. the statements SM,x and ¬SM,x exist and are efficiently computable given 〈M〉, x

2. given a statement S and a string P , it is decidable whether P is a proof of S

3. no false statement has a proof

4. all true statements have a proof

The requirements (1) and (2) are basic properties that we would like of any reasonable formal-
ization of mathematics.

Perhaps we should justify these assumptions. If a system does not even allow you to formalize
interesting theorems, then its limitations are clear from the start. In fact, one can come up with
formal systems where are all true statements that you can write down are provable, but this is
just because the system prevents you from writing down plenty of interesting statements. An
example of such a system is the first-order theory of integers with addition discussed in Sipser’s

1



book. From our perspective, as computer scientists, a formalization of mathematics that does not
allow us to talk about algorithms and Turing machines is not useful. One may still object that
important subjects of mathematics (for example calculus and number theory) could be captured
by a formal system that would still be intuitively interesting but that may not allow a definition of
Turing machine. As explained in Sipser’s book, however, already the first-order theory of integers
with addition and multiplication satisfies our first assumption (using a clever encoding of Turing
machines as integers).

Regarding the second assumption, in all formalizations of mathematics proposed so far, valid
proofs have a very simple structure, and can be described by a simple grammar. In any such
formalization, one can construct a program to decide whether a proof is valid using yacc and a
few hours of spare time. In general, a definition of “proof” that makes it undecidable to check
the validity of a proof contradicts our intuitive notion that a proof is something that convinces us
that a statement is true. If we allowed undecidable proofs, then it would be easy to come up with
formalizations where all statements are provable: just allow the string “it’s trivial” to be a valid
proof for true statements.

Now, if a formalization of mathematics satisfies (1) and (2), it must either fail (3), meaning
that the system is inconsistent, and hence useless, or, finally, fail (4), which means that in any
sufficiently useful formalization of mathematics there are true statements that do not have a proof.

There are two undesirable feature in the above argument that we would like to eliminate. One
is that the argument shows the existence of true statements that are not provable, but it does not
exhibit a specific true and unprovable statement.

The other is a more subtle point. Whether a statement is true or not is not a property of a
formalism to write mathematics, but of how we interpret the statements in the system as claims
about actual mathematical objects. Logicians prefer to reason about the consistency and com-
pleteness of a formal system without reference to any interpretation. They do so by saying that a
formal system is inconsistent if there is a statement S such that both S and ¬S are provable, and
by saying that a formal system is incomplete if there is a statement S such that neither S nor ¬S
are provable. Notice that if a formal system is inconsistent, then for every interpretation there is a
false statement that is provable, because there is an S such that S and ¬S are both provable, and
one of them has to be false. Likewise, if a formal system is incomplete, then for every interpretation
there is a true statement that is not provable.

The argument in this section did not show that every formal system to reason about Turing
machines has to be either incomplete or inconsistent according to the syntactic definition of incom-
pleteness and inconsistency: it could be that all the statements of the form SM,x are provable and
none of the statements of the form ¬SM,x are provable.

2 A Refined Argument

Let us review the terminology we have introduced so far

• Formalization of mathematics: a set of mathematical statements S and proofs P , and a
definition of when P is a proof of S. We will make the following assumptions:

1. For every Turing machine M and string x, there is a statement SM,x, which is computable
given 〈M〉 and x, which is meant to encode the fact that M halts on input x.

2. If M halts on input x, then there is a proof P of SM,x, which is computable given 〈M〉
and x

2



3. If M on input x reaches a loop (meaning that the same configuration is encountered
twice), then there is a proof of ¬SM,x, which is computable given 〈M〉 and x

• Consistency: a formalization of mathematics is inconsistent if there is a statement S such
that both S and ¬S are provable; it is consistent if it is not inconsistent.

• Completeness: a formalization of mathematics is incomplete if there is a statement S such
that neither S nor ¬S are provable; it is complete if it is not incomplete.

Theorem 1 (Gödel) Every consistent formalization of mathematics that satisfies the assumptions
(1), (2) and (3) is incomplete.

Proof: Suppose towards a contradiction that there is a consistent and complete formal system
that satisfies assumptions (1), (2) and (3). Then we can define the algorithm for the halting problem
that we described in the previous section. When we proved that the halting problem is undecidable,
we showed that if the halting problem was decidable we could devise an algorithm that accepts
if and only if it rejects when given its own code as an input, which is impossible. We will apply
the same ideas to the algorithm of the previous section, and we will end up with an algorithm MG

that, when given in input its own code, provably halts if and only if it provably loops. This means
that either the statements SMG,〈MG〉 and ¬SMG,〈MG〉 are both provable, in which case the system
is inconsistent, or neither of them is provable, in which case the system is incomplete. Details are
below.

Consider the following algorithm, and call MG the Turing machine that implements it:

• Input: a description 〈M〉 of a Turing machine M

• Construct the statement SM,〈M〉

• For every string P , in lexicographic order

– If P is a proof of SM,〈M〉 then
while (true)

;

– If P is a proof of ¬SM,〈M〉 then halt

This algorithm is realized by a Turing machine MG. Consider the behavior of MG on input
〈MG〉.

If it halts, then it is because it has found a proof of ¬SMG,〈MG〉, but if MG halts on input 〈MG〉
then a proof of SMG,〈MG〉 also exists, because of assumption (2), and so the system is inconsistent.

If it does not halt because it reaches the “while (true)” line, then it is because it has found a
proof of SMG,〈MG〉. After that point, however, the computation of MG continues for ever because of
an infinite loop in which the same configuration is repeated again and again, and so by assumption
(3) we have that ¬SMG,〈MG〉 is also provable, and so we violate consistency again.

The remaining case is that MG runs for ever because it never finds any proof of ¬SMG,〈MG〉 or
of SMG,〈MG〉, and thus we have a violation of completeness. �

Gödel’s second incompleteness theorem is that the consistency of a formal system cannot be
proved within the system, unless the system is actually inconsistent, in which case the proof means
nothing. To make this theorem precise we need to make some more assumptions about what can
be expressed and proved in our formal system. Instead of doing that, we will just give the proof,

3



and then you can see that any formal system in which the following argument can be carried out
suffers from Gödel’s second incompleteness theorem. (This includes all the known, and conceivable,
approaches to formalizing mathematics.)

Let us look back at the machine MG used to prove the first incompleteness theorem. We argued
that, if our formal system is consistent, then MG does not halt on input 〈MG〉. The reasoning
that we used is very basic, and it can itself be expressed in our formal system (under appropriate
assumptions), which means that there is a proof, within the system, that if the system is consistent
then MG does not halt on input 〈MG〉. But if we also have a proof, within the system, that the
system is consistent, then the two proofs can be combined into a proof that MG does not halt on
input 〈MG〉. But the existence of such a proof causes MG to halt on input 〈MG〉! This means that
a proof of consistency cannot exist, unless the system is actually inconsistent.

Theorem 2 (Church-Turing) In every consistent formalization F of mathematics that satisfies
the assumptions (1), (2) and (3), the following language is undecidable:

ProvabilityF = {S : there is either a proof of S or a proof of ¬S}

Proof: Suppose that for a formal system F that satisfies assumptions (1), (2) and (3) the language
ProvabilityF were decidable by a machine MP . Then consider the following algorithm MCT

• Input: a description 〈M〉 of a Turing machine M

• Construct the statement SM,〈M〉

• If MP (SM,〈M〉) rejects then halt

• For every string P , in lexicographic order

– If P is a proof of SM,〈M〉 then
while (true)

;

– If P is a proof of ¬SM,〈M〉 then halt

We see that MCT halts on input 〈M〉 if and only if there is no proof of SM,〈M〉.
Consider the computation of MCT on input its own code 〈MCT 〉. If it halts, then there is no

proof that it halts, in contradiction to assumption (2).
If it does not halt, it is because it goes into an infinite loop in which configurations are repeated,

but then by assumption (3) there is a proof of ¬SMCT ,〈MCT 〉, in which case it does not halt. �

4


