Lecture 3: Convolution and filtering

COS 429: Computer Vision

Slides adapted from: Szymon Rusinkiewicz, Jia Deng

Image processing

What's the basic structure we may want to detect?

Origin of Edges

• Edges are caused by a variety of factors:

Edge Detection

- Intuitively, much of semantic and shape information is available in the edges
- Ideal: artist's line drawing (but artist is also using object-level knowledge)
- But what, mathematically, is an edge?

Edge easy to find-

Where is edge? Single pixel wide or multiple pixels?

Source: S. Rusinkiewicz

Noise: have to distinguish noise from actual edge

Source: S. Rusinkiewicz

Linear filtering: basics

Motivation: Image denoising

• How can we reduce noise in a photograph?

Source: S. Lazebnik

Idea #1: moving average

- Let's replace each pixel with a weighted average of its neighborhood
- The weights are called the *filter kernel*

1	1	1	1		90	92	92	93	93	94	94	95	95	96
_	1	1	1		94	95	96	96	97	98	98	99	99	99
9	1	1	1		98	99	99	100	101	101	102	102	102	103
				J	103	103	104	104	105	107	106	106	111	121
((hay filtar))					108	108	109	110	112	111	112	119	123	117
box filter			113	113	110	111	113	112	122	120	117	106		
					118	118	109	96	106	113	112	108	117	114
					116	132	120	111	109	106	101	106	117	118
					111	142	112	111	101	106	104	109	113	110
					114	139	109	108	103	106	107	108	108	108
					115	139	117	114	101	104	103	105	114	110
					115	129	103	114	101	97	109	116	117	118
					120	130	104	111	116	104	107	109	110	99
					125	130	103	109	108	98	104	109	119	105
					119	128	123	138	140	133	139	120	137	145
					164	138	143	163	155	133	145	125	133	155

Defining convolution

Let *f* be the image and *g* be the kernel. The output of convolving *f* with *g* is denoted *f* * *g*.

$$(f \ast g)[i, j] = \sum_{k,l} f[i - k, j - l]g[k, l]$$

Convention:
kernel is "flipped"

- Kernel center is positioned at [i,j]
 - for a 3x3 filter, k and I range between -1 and 1

Source: F. Durand

Annoying details

What is the size of the output?

- MATLAB: conv2(g, f, shape)
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - *shape* = 'valid': output size is difference of sizes of f and g

Original

?

Original

Blur (with a box filter)

00010000

?

Original

Original

Filtered (no change)

<u>Convolution</u> with linear filters

?

Original

Original

Shifted *left* By 1 pixel

Proof that convolution is commutative

• Claim:
$$f * g = g * f$$

Consider a 1-D convolution for simplicity (2-D proof similar)

$$(f * g)[i] = \sum_{k} f[i - k]g[k]$$

$$m = i - k$$

$$= \sum_{m} f[m]g[i - m]$$

$$= (g * f)[i]$$

Key properties of convolutions

$$(f * g)[i] = \sum_{k} f[i - k]g[k]$$

- Commutative: *f* * *g* = *g* * f
 - Conceptually no difference between filter and signal
- Associative: f* (g * h) = (f * g) * h
 - Often apply several filters one after another: $(((f * g_1) * g_2) * g_3)$
 - This is equivalent to applying one filter: $f * (g_1 * g_2 * g_3)$
- Distributes over addition: $f^*(g + h) = (f^*g) + (f^*h)$
- Scalars factor out: kf * g = f * kg = k (f * g)
- Identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...],
 f* e = f

Convolution vs cross-correlation

Convolution

$$(f * g)[i] = \sum_{k} f[i - k]g[k]$$

- Preserves associativity and commutativity, unlike crosscorrelation (exercise: check)
- Matlab: conv, conv2, imfilter

Cross-correlation

$$(f \otimes g)[i] = \sum_{k} f[i+k]g[k]$$

• Intuitively **simpler**

- Matlab: filter2, imfilter
- Used somewhat interchangeably in practice

Sharpening and Gaussian filters

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?
 - To eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center

"fuzzy blob"

(Note that filter sums to 1)

Original

Original

Sharpening filter

- Accentuates differences with local average

Sharpening

before

after

Sharpening

What does blurring take away?

detail

Let's add it back:

Source: S. Lazebnik

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

 Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case)

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

5 x 5, $\sigma = 1$

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

• Standard deviation σ : determines extent of smoothing

Source: K. Grauman

Choosing kernel width

• The Gaussian function has infinite support, but discrete filters use finite kernels

Choosing kernel width

• Rule of thumb: set filter half-width to about 3σ

Gaussian vs. box filtering

Source: S. Lazebnik

Gaussian filters properties

- Remove high-frequency components from the image (*low-pass filter*)
- Convolution with self is another Gaussian
 - So can smooth with small- σ kernel, repeat, and get same result as larger- σ kernel would have
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev. $\sigma\sqrt{2}$

Separable kernel

- Factors into product of two 1D Gaussians
- Discrete example:

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

Source: K. Grauman

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Why is separability useful?

- Separability means that a 2D convolution can be reduced to two 1D convolutions (one among rows and one among columns)
- What is the complexity of filtering an n×n image with an m×m kernel?
 - O(n² m²)
- What if the kernel is separable?
 - O(n² m)

Coming back to edge detection

Winter in Kraków photographed by Marcin Ryczek

Edge detection

Source: S. Lazebnik

Derivatives with convolution

For 2D function f(x,y), the partial derivative is:

$$\frac{\partial f(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

To implement the above as convolution, what would be the associated filter?

Partial derivatives of an image

Which shows changes with respect to x?

Source: S. Lazebnik

Image gradient

The gradient of an image: $\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient points in the direction of most rapid increase in intensity

• How does this direction relate to the direction of the edge?

The gradient direction is given by $\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Effects of noise

Consider a single row or column of the image

Where is the edge?

Source: S. Seitz

Solution: smooth first

• To find edges, look for peaks in

 $\frac{d}{dx}(f * g)$

Source: S. Seitz

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$
- This saves us one operation:

Source: S. Seitz

Derivative of Gaussian filters

Which one finds horizontal/vertical edges?

Source: S. Lazebnik

Derivative of Gaussian filters

Are these filters separable?

Source: S. Lazebnik

Recall: separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Scale of Gaussian derivative filter

Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales"

1 pixel

3 pixels

7 pixels

Source: D. Forsyth

Review: Smoothing vs. derivative filters

Smoothing filters

- Gaussian: remove "high-frequency" components;
 "low-pass" filter
- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - One: constant regions are not affected by the filter

Derivative filters

- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - Zero: no response in constant regions
- High absolute value at points of high contrast

Edge detection algorithms

Noise: have to distinguish noise from actual edge

Source: S. Rusinkiewicz

Is this one edge or two?

Texture discontinuity

Source: S. Rusinkiewicz

- 1. Filter image with derivative of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. ...
- 4. ...

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

original image

magnitude of the gradient

Slide credit: Steve Seitz

thresholding

Slide credit: Steve Seitz

thresholding

Non-maximum suppression

Check if pixel is local maximum along gradient direction, select single max across width of the edge

- requires checking interpolated pixels p and r

Non-maximum suppression

Slide credit: Steve Seitz

Non-maximum suppression

Problem: pixels along this edge didn't survive the thresholding

thinning (non-maximum suppression)

Slide credit: Steve Seitz

Hysteresis thresholding

Use a high threshold to start edge curves, and a low threshold to continue them.

Hysteresis thresholding

original image

high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold

```
Source: L. Fei-Fei
```

- 1. Compute x and y gradient images
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

J. Canny, <u>*A Computational Approach To Edge Detection*</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Faster Edge Detectors

- Can build simpler, faster edge detector by omitting some steps:
 - No nonmaximum suppression
 - No hysteresis in thresholding
 - Simpler filters (approx. to gradient of Gaussian)

• Sobel:
$$\begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix}$$

• Roberts:
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Image gradients vs. meaningful contours

• Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

human segmentation

gradient magnitude

image

Data-Driven Edge Detection

P. Dollar and L. Zitnick, Structured forests for fast edge detection, ICCV 2013

Next class: feature detectors and descriptors

