Advanced topics 1n deep learning:
segmentation and pose estimation

COS 429: Computer Vision

PRINCETON
UNIVERSITY



Semantic segmentation




Recall: contour/boundary detection

Separate image into coherent “regions”

L oulae<T N
\,:_:{ /r -L.) ]') —]" 'wv\"\\s_v-v -
» T v/ ! '\I.,
e 2 ‘t‘?_‘-.")."lp 3 ]{-‘—'fvz Nt
(S I T e
| J‘ - -~
L, P
sl 1"’*&- =
[ (U afinaniuel ASCN
\_._L ] \J
?b,._. SO oo -
7
e ~. Al
- 1
'wl,'-" A= st
L A ! l
""ré_'&", \“-VE;\ Q ;1 \ i
415\(3;?1 P [ i .‘( —'? | -‘\TL.
it QM |
4 P _g - - \.—\x
T gy (VG
72587  |H~ —
4 {/ ey >
r o N | fof
| f VR /
- | S /S \A / )
;v J & | f l s f
| P A / ) ~,
/._}X LA \ ,/‘\‘ | i
| L4 ) 2 o

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Lazebnik



Human agreement

Berkeley segmentation dataset

A Measure lor Objective Evalualion of Image Segmenlation Algorithms

R. Unnikrishnan ~ C. Pantofaru M. Hehent CVPR 2005



Recall: unsupervised/superpixel segmentation

a Basul:
Efficlent Graph-Basad Image Segmentation Exampl., Results

P Felzenszwalh, O. Huttenlocher
International Joumal of Cormnputer Vision, Vol 53, No. 2. Septesnber 2004

http://cs.brown.edu/~pff/segment/

Seqmentation parameters: sigma « 0.5, K « 1000, mn « 100,



Generating object proposals

Segmentation as Selective Search for Object Recognition.

Koen E. A. van de Sande, Jasper R. R. Uijlings, Theo Gevers, Arnold W. M. Smeulders
ICCV 2011

(a) (b)

Figure 2: Two examples of cur selective search showing the necessity of different scales. On the left we find many objects at different
scales. On the right we necessarily find the objacts at difterent scelas as the girl 1s contained hy the v

https://www.koen.me/research/selectivesearch/



Semantic segmentation

Label each pixel in the
image with a category
label

Don’t differentiate
instances, only care about
pixels

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung


https://pixabay.com/p-1246693/?no_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/

Semantic segmentation

PASCAL VOC (20 objects)

Figure from http://vision.stanford.edu/whats_the_point/



Semantic segmentation 1dea: sliding window

Classify center
Extract patch pixel with CNN

Full image

Cow

Cow

Grass

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Problem: Very inefficient! Not
reusing shared features
between overlapping patches

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Semantic segmentation 1dea: fully convolutional

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

A4 4 A4

Conv Conv argmax
—> —> —>

CxHxW HxW

Convolutions:
DxHxW

Problem: convolutions at

original image resolution will
be very expensive ...

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Semantic segmentation 1dea: fully convolutional

Design network as a bunch of convolutional layers, with

Bgc‘;‘lli?];ars':ri)cliigc?: downsampling and upsampling inside the network! ’l?Jrg)?sampling:
convolution Med-res: Med-res:
D,x Hidx Wi4  D,x Hi4 x Wia 4
Low-res:
u D, x H/4 x W/4 LA
Input: High-res: High-res: Predictions:
3xHxW D, x H/2 x W/2 D, x H/2 x W/2 Hx W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



In-Network upsampling: “Unpooling™

- “B f N 'I ”
Nearest Neighbor A P ed of Nails sols o
112 1 1|2 2 12 O 0|0 O
> >
3 4 3 3|4 4 3 4 3 0|4 0
3 314 4 o olo o
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



In-Network upsampling: “Max Unpooling”

Max Pooling

: Max Unpoolin
Remember which element was max! P g

Use positions from

1 >le 3 pooling layer 0 0 2 0
3 5|2 1 5 6 1T 2 O 1 0 O
> > mous > 3 | 4 >
1 212 1 78 Rest of the network 0 jo0joypo
7 3|4 8 3 0 0 4
Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x 4

Corresponding pairs of

downsampling and [
upsampling layers

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Learnable Upsampling: Transpose Convolution

Recall:Typical 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

>

Dot product
between filter
and input

Input: 4 x 4 Output: 4 x 4

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

>

Dot product
between filter
and input

Input: 4 x 4 Output: 4 x 4

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4 Output: 2 x 2

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

>

Dot product
between filter
and input

Input: 4 x 4 Output: 2 x 2

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4

> Filter moves 2 pixels in
Dot product the input for every one
between filter pixel in the output

and input
Stride gives ratio

between movement in
input and output

Output: 2 x 2

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x 4

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

>

Input gives
weight for
filter

Input: 2 x 2 Output: 4 x 4

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Learnable Upsampling: Transpose Convolution

Sum where

3 x 3 transpose convolution, stride 2 pad 1 output overlaps

Other names:
-Deconvolution
-Upconvolution

-Fractionally strided
convolution

-Backward strided
convolution

Input: 2 x 2

>

Input gives
weight for
filter

Filter moves 2 pixels in
the output for every one
pixel in the input

Stride gives ratio
between movement in
output and input

Output: 4 x 4

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Transpose Convolution: 1D example

Output

InPUt Filter Output contains
ax copies of the filter
weighted by the
input, summing at
ay where at overlaps in

/ X
a —  the output
y az [+|bx
b — Need to crop one
pixel from output to
Z by make output exactly

/ 2x input
\ E

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Semantic segmentation 1dea: fully convolutional

Design network as a bunch of convolutional layers, with Upsampling:
downsampling and upsampling inside the network! unpooling or strided

transpose convolution

Downsampling:
Pooling, strided
convolution

Med-res: Med-res:
D,x HiAx Wi4  Dyx Hid x Wid /4
Low-res:
u D, x H/4 x W/4 LA
Input: High-res: High-res: Predictions:
3xHxW D, x H/2 x W/2 D, x H/2 x W/2 Hx W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Semantic segmentation literature

http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review

Qure.ai Blog

Revolutionizing healthcare with deep learning

A 2017 Guide to Semantic Segmentation with Deep
Learning

Sasark Chilamkurthy | July 5, 2017




Semantic segmentation literature

http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review

Input DCNN Aeroplane Coarse

. Score m
\ _ Atrous Convolution r‘&
il A/Sl SN

Bidinear Interpolation

Final Output Fully Connected CRF

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs
Liang-Chieh Chen*, George Papandreou*, Iasonas Kokkinos, Kevin Murphy, and

Alan L. Yuille



Cute aside

Phologreghic lmage Synlhesis wilh Cascaded Refinemen! Nelworks

Ofeng Che

Abstract

http://vladlen.info/publications/photographic-image-synthesis-cascaded-refinement-networks/



Instance segmentation




Instance segmentation task
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e Masks for each individual object instance

« Sometimes called “object detection” now

» Consider two approaches:
» Start from a semantic segmentation model
» Start from an object detection model

MSCOCO



Attempt #1: Starting from semantic segmentation

Scores: Predictions:
O xHxW CxHxW HxW

Issue: don’t know the number of instances

(we’ll come back to this)



Starting from detection model: Faster RCNN

> Classification Scores: C
Box coordinates (per class): 4 * C

/]
y
// //
1 / >
/
1)/ /" Rol Align )/
//
256 x 14 x 14

Ren et al, “Faster R-CNN”, NIPS 2015

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Mask R-CNN

> Classification Scores: C
Box coordinates (per class): 4 * C

g —>
2 / >

y y
/" Rol Align )7 Conv | |1}/ Conv

256 x14x14 256x14 x14 Predict a mask for
each of C classes

Cx14x14

He et al, “Mask R-CNN”, ICCV 2017

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Mask R-CNN
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Mask R-CNN also does pose...

He et al, “Mask R-CNN”, ICCV 2017




Human pose estimation




Human pose estimation task

Fangting Xia, Peng Wang, Xianjie Chen, Alan Yuille, Joint Multi-Person Pose Estimation and Semantic Part Segmentation in a Single Image. In CVPR, 2017

https://sites.google.com/view/pasd/dataset?authuser=0


https://sites.google.com/view/pasd/dataset?authuser=0

Pictorial structures model

P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. [JCV 2005.
M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited: People detection and articulated pose estimation. CVPR 2009
Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixture-of-parts. CVPR 2011.

Figure from Sigal et al. “Human pose estimation” https://cs.brown.edu/~Is/Publications/SigalEncyclopediaCVdraft.pdf



Regression-based model

Correct left
foot: (X, y')
|

v
‘\-_ W J:L ~ r_‘47‘:’ — < SO il /’ Left fOOt: (X! y) '> L2 IOSS
| = — =T e —— Right foot: (X, ¥) 3 L2 loss \4
) — s U A
; l =, R T \ 1+ —» Loss
Vector: 4 /
4096 Head top: (X, ¥) . | 5 |oss
A

|
Correct head
(X, Y
Toshev and Szegedy, “DeepPose: Human Pose t°p ( Y )
Estimation via Deep Neural Networks”, CVPR 2014

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Model based on keypoint heatmaps

Neck Left elbow  Left wrist Right knee  Right ankle

' Scores: Predictions:
3xHxW Nerriave W

Figure from Newell et al. Stacked Hourglass Networks for Human Pose Estimation. ECCV 2016



Model based on keypoint heatmaps

Convelutional (a) Stage 1
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Wei et al. “Convolutional Pose Machines” CVPR 2016

cf also

Carriera et al. “Human Pose Estimation with Iterative Error Feedback” CVPR 2016

Newell et al. Stacked Hourglass Networks for Human Pose Estimation. ECCV 2016

Xia et al. “Joint Multi-Person Pose Estimation and Semantic Part Segmentation” CVPR 2017
Cao et al. “Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields” CVPR 2017
etc.



Mask R-CNN pose model

> Classification Scores: C
Box coordinates (per class): 4 * C
Joint heat map

—> —>
VAN

y/ y/
)/ RolAiign | [l Conv | |])/ Conv

256 x 14 x14 256 x14 x 14 Predict a mask for
each of C classes

Cx14x14

He et al, “Mask R-CNN”, ICCV 2017

Stanford CS231N Fei-Fei Li, Justin Johnson, Serena Yeung



Mask R-CNN also does pose...

He et al, “Mask R-CNN”, ICCV 2017




Bringing it all together




Multi-person pose estimation

|

Figure 1. Both multi-person pose estimation and instance segmenta-
tion are examples of computer vision tasks that require detection of
visual elements (joints of the body or pixels belonging to a semantic
class) and grouping of these elements (as poses or individual object
Istances).

Newell et al. Associative Embedding: End-to-end learning for joint detection and grouping. NIPS 2017



Multi-person pose estimation

Mask-RCNN does / B R
this automatically = %

but requires going ﬁ;;ﬁ - D F’

through region i L [

proposals -

But what about
an image-level
heatmap

Predictions:
HxW



Multi-person pose estimation

detaction Featmaps +
1Scociative embeddings

inpul image ) 27 final prediction
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Figure 3. An overview of our approach for producing multi-person pose estimates. For each jeint of the body, the network simultaneously
produces detection heatmaps and predicts associative embedding tags. We take the top detections for each joint and match them to other
detections that share the same embedding tag to produce a final set of individual pose predictions.

Newell et al. Associative Embedding: End-to-end learning for joint detection and grouping. NIPS 2017



Course overview




MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligence Group July 7, 1966
Vision Memo. No. 100,

THE SUMMER VISTION PROJECT

Seymour Papert

effectively in Che construction of a significant part of a visual system.
'n:eAparticular task was chosen parth because it cen be segmented into
sub-problems which will allov individuals to work independently and yet
participate in the construction of a system complex enough to be a real

landmark in the development of “pattern recognition!l.



MASSAUHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligence Group July 7, 1966

Vision Memo. bo. 100,

effectively in the const pert of a visual system.

The particular tas) ' cen be segmented into

tals to work independently and vet



Course Outline

Image formation and capture -;'Lﬂa

Filtering and feature detection m , N

Segmentation and clustering _ 3

Recognition and classification

Motion estimation and tracking

3D shape reconstruction m

Convolutional neural nets / deep learning Af-.: LB




Sorting our mail
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Detecting (frontal) faces

.4 JUDYBATS

’ c.?
- a
? > ¥ .v.'

FinePix 56000fd, by Fujifilm, 2006 Viola & Jones. 2001
)



3D Maps

CHCLA Hepy A5 Weall

Image from Nokia’s Maps 3D WebGL
(see also: Google Maps GL, Google Earth)

Slide credit: Deva Ramanan



http://maps3d.svc.nokia.com/webgl/
http://maps3d.svc.nokia.com/webgl/
http://googleblog.blogspot.com/2011/10/step-inside-map-with-google-mapsgl.html
http://googleblog.blogspot.com/2011/10/step-inside-map-with-google-mapsgl.html
http://googleblog.blogspot.com/2011/10/step-inside-map-with-google-mapsgl.html

Photo tourism

Reconstructing the 4D world
(UWashington/Microsoft)

Slide credit: Deva Ramanan



Understanding traffic patterns
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Alahi & Fei-Fei, 2014




Self-Driving Cars




Course Outline

Image formation and capture ﬂ‘g@

. . N . MJ_
Filtering g |
Course evaluations:
Segmente
= - What did you like about the course?
Recognitig
| - What were your favorite topics?
Motion es
f)
3D shape - What didn’t work for you
A
Convolutional neural nets/deep learning /C\-_-_,_“-. i

Guest lecture on Thursday: video understanding
Your projects: deep dive into your favorite topic

COS 598B seminar: More advanced deep learning, closer examination of

vision data, language + vision (VQA), action recognition in video



