Lecture 21
Deep Learning: Initialization, Architectures, Object Detection and Other Applications

COS 429: Computer Vision

Thanks: most of these slides shamelessly adapted from Stanford CS231n: Convolutional Neural Networks for Visual Recognition Fei-Fei Li, Andrej Karpathy, Justin Johnson http://cs231n.stanford.edu/
\[f(x, y, z) = (x + y)z \]

Example: \(x = -2, y = 5, z = -4 \)

- \(q = x + y \) \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \)

- \(f = qz \) \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \)

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)

Chain rule:
\[
\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \cdot \frac{\partial q}{\partial x}
\]
Review: Backpropagation

\[
\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}
\]

\[
\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial y}
\]

 activates

“local gradient”

gradients
Recall: Max Pooling

Question: what are the partial derivatives of a max pool layer?

Single depth slice

max pool with 2x2 filters and stride 2
Full (simplified) AlexNet architecture:

- [227x227x3] INPUT
- [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
- [27x27x96] MAX POOL1: 3x3 filters at stride 2
- [27x27x96] NORM1: Normalization layer
- [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
- [13x13x256] MAX POOL2: 3x3 filters at stride 2
- [13x13x256] NORM2: Normalization layer
- [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
- [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
- [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
- [6x6x256] MAX POOL3: 3x3 filters at stride 2
- [4096] FC6: 4096 neurons
- [4096] FC7: 4096 neurons
- [1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%
Case Study: ZFNet [Zeiler and Fergus, 2013]

AlexNet but:
CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 15.4% -> 14.8%
Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

best model

11.2% top 5 error in ILSVRC 2013
->
7.3% top 5 error
TOTAL memory: 24M * 4 bytes ~ = 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
INPUT: \([224 \times 224 \times 3]\)
- **memory:** \(224 \times 224 \times 3 = 150 \text{K}\)
- **params:** 0

CONV3-64: \([224 \times 224 \times 64]\)
- **memory:** \(\textcolor{red}{224 \times 224 \times 64 = 3.2 \text{M}}\)
- **params:** \((3 \times 3 \times 3) \times 64 = 1,728\)

CONV3-64: \([224 \times 224 \times 64]\)
- **memory:** \(\textcolor{red}{224 \times 224 \times 64 = 3.2 \text{M}}\)
- **params:** \((3 \times 3 \times 64) \times 64 = 36,864\)

POOL2: \([112 \times 112 \times 64]\)
- **memory:** \(112 \times 112 \times 64 = 800 \text{K}\)
- **params:** 0

CONV3-128: \([112 \times 112 \times 128]\)
- **memory:** \(\textcolor{red}{112 \times 112 \times 128 = 1.6 \text{M}}\)
- **params:** \((3 \times 3 \times 64) \times 128 = 73,728\)

CONV3-128: \([112 \times 112 \times 128]\)
- **memory:** \(\textcolor{red}{112 \times 112 \times 128 = 1.6 \text{M}}\)
- **params:** \((3 \times 3 \times 128) \times 128 = 147,456\)

POOL2: \([56 \times 56 \times 128]\)
- **memory:** \(56 \times 56 \times 128 = 400 \text{K}\)
- **params:** 0

CONV3-256: \([56 \times 56 \times 256]\)
- **memory:** \(\textcolor{red}{56 \times 56 \times 256 = 800 \text{K}}\)
- **params:** \((3 \times 3 \times 128) \times 256 = 294,912\)

CONV3-256: \([56 \times 56 \times 256]\)
- **memory:** \(\textcolor{red}{56 \times 56 \times 256 = 800 \text{K}}\)
- **params:** \((3 \times 3 \times 256) \times 256 = 589,824\)

POOL2: \([28 \times 28 \times 256]\)
- **memory:** \(28 \times 28 \times 256 = 200 \text{K}\)
- **params:** 0

CONV3-512: \([28 \times 28 \times 512]\)
- **memory:** \(\textcolor{red}{28 \times 28 \times 512 = 400 \text{K}}\)
- **params:** \((3 \times 3 \times 256) \times 512 = 1,179,648\)

CONV3-512: \([28 \times 28 \times 512]\)
- **memory:** \(\textcolor{red}{28 \times 28 \times 512 = 400 \text{K}}\)
- **params:** \((3 \times 3 \times 512) \times 512 = 2,359,296\)

POOL2: \([14 \times 14 \times 512]\)
- **memory:** \(\textcolor{red}{14 \times 14 \times 512 = 100 \text{K}}\)
- **params:** 0

CONV3-512: \([14 \times 14 \times 512]\)
- **memory:** \(\textcolor{red}{14 \times 14 \times 512 = 100 \text{K}}\)
- **params:** \((3 \times 3 \times 512) \times 512 = 2,359,296\)

CONV3-512: \([14 \times 14 \times 512]\)
- **memory:** \(\textcolor{red}{14 \times 14 \times 512 = 100 \text{K}}\)
- **params:** \((3 \times 3 \times 512) \times 512 = 2,359,296\)

POOL2: \([7 \times 7 \times 512]\)
- **memory:** \(\textcolor{red}{7 \times 7 \times 512 = 25 \text{K}}\)
- **params:** 0

FC: \([1 \times 1 \times 4096]\)
- **memory:** 4096
- **params:** \(7 \times 7 \times 512 \times 4096 = 102,760,448\)

FC: \([1 \times 1 \times 4096]\)
- **memory:** 4096
- **params:** \(4096 \times 4096 = 16,777,216\)

FC: \([1 \times 1 \times 1000]\)
- **memory:** 1000
- **params:** \(4096 \times 1000 = 4,096,000\)

TOTAL memory: \(24\text{M} \times 4\text{ bytes} \approx 93\text{MB} / \text{image}\) (only forward! \(\sim 2\) for bwd)

TOTAL params: 138M parameters

Note:
- Most memory is in early CONV
- Most params are in late FC
Step 1: Preprocess the data

Assume $X \ [N \times D]$ is data matrix, each example in a row.

- Original data
- Zero-centered data
- Normalized data

$X = \text{np.mean}(X, \text{axis} = 0)$

$X = \text{np.std}(X, \text{axis} = 0)$
TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet)
 (mean image = [32,32,3] array)
- Subtract per-channel mean (e.g. VGGNet)
 (mean along each channel = 3 numbers)

Not common to normalize variance, to do PCA or whitening
Q: what happens when W=0 init is used?
- First idea: **Small random numbers**
 (gaussian with zero mean and 1e-2 standard deviation)

\[W = 0.01 \times \text{np.random.randn}(D,H) \]
- First idea: **Small random numbers**
 (gaussian with zero mean and 1e-2 standard deviation)

\[
W = 0.01 \times \text{np.random.randn}(D,H)
\]

Works ~okay for small networks, but can lead to non-homogeneous distributions of activations across the layers of a network.
Let's look at some activation statistics.

E.g. 10-layer net with 500 neurons on each layer, using tanh non-linearities, and initializing as described in last slide.

```python
# assume some unit gaussian 10-D input data
D = np.random.randn(1000, 500)
hidden_layer_sizes = [500]*10
nonlinearities = ['tanh']*len(hidden_layer_sizes)

act = {'relu': lambda x: np.maximum(0, x), 'tanh': lambda x: np.tanh(x)}
Hs = {}
for i in xrange(len(hidden_layer_sizes)):
    X = D if i == 0 else Hs[i-1]  # input at this layer
    fan_in = X.shape[1]
    fan_out = hidden_layer_sizes[i]
    W = np.random.randn(fan_in, fan_out) * 0.01  # layer initialization
    H = np.dot(X, W)  # matrix multiply
    H = act[nonlinearities[i]](H)  # nonlinearity
    Hs[i] = H  # cache result on this layer

# look at distributions at each layer
print 'input layer had mean %f and std %f' % (np.mean(D), np.std(D))
layer_means = [np.mean(H) for i, H in Hs.iteritems()]
layer_stds = [np.std(H) for i, H in Hs.iteritems()]
for i, H in Hs.iteritems():
    print 'hidden layer %d had mean %f and std %f' % (i+1, layer_means[i], layer_stds[i])

# plot the means and standard deviations
plt.figure()
plt.subplot(121)
plt.plot(Hs.keys(), layer_means, 'ob-')
plt.title('layer mean')
plt.subplot(122)
plt.plot(Hs.keys(), layer_stds, 'or-')
plt.title('layer std')

# plot the raw distributions
plt.figure()
for i , H in Hs.iteritems():
    plt.subplot(1, len(Hs), i+1)
    plt.hist(H.ravel(), 30, range=(-1,1))
```
Input layer had mean 0.000927 and std 0.990380
hidden layer 1 had mean -0.000117 and std 0.213081
hidden layer 2 had mean -0.000061 and std 0.047551
hidden layer 3 had mean -0.000002 and std 0.010630
hidden layer 4 had mean 0.000001 and std 0.002378
hidden layer 5 had mean 0.000002 and std 0.000532
hidden layer 6 had mean -0.000000 and std 0.000119
hidden layer 7 had mean 0.000000 and std 0.000026
hidden layer 8 had mean -0.000000 and std 0.000006
hidden layer 9 had mean 0.000000 and std 0.000001
hidden layer 10 had mean -0.000000 and std 0.000000
All activations become zero!

Q: think about the backward pass. What do the gradients look like?

Hint: think about backward pass for a W*X gate.
Almost all neurons completely saturated, either -1 and 1. Gradients will be all zero.

*1.0 instead of *0.01
"Xavier initialization"
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation assumes linear activations)
but when using the ReLU nonlinearity it breaks.
input layer had mean 0.00001 and std 0.999444
hidden layer 1 had mean 0.502488 and std 0.825232
hidden layer 2 had mean 0.553614 and std 0.827835
hidden layer 3 had mean 0.545867 and std 0.013655
hidden layer 4 had mean 0.565396 and std 0.826902
hidden layer 5 had mean 0.547678 and std 0.834092
hidden layer 6 had mean 0.587103 and std 0.060035
hidden layer 7 had mean 0.596867 and std 0.870610
hidden layer 8 had mean 0.623214 and std 0.889348
hidden layer 9 had mean 0.567498 and std 0.845357
hidden layer 10 had mean 0.552531 and std 0.844523

He et al., 2015
(note additional /2)
He et al., 2015
(note additional /2)
Proper initialization is (was?) an active area of research…

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

On weight initialization in deep neural networks, Siddharth Krishna Kumar, 2017

…
Batch Normalization

“you want unit gaussian activations? just make them so.”

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

\[\hat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}} \]

this is a vanilla differentiable function...
Batch Normalization

“I want unit gaussian activations? just make them so.”

1. compute the empirical mean and variance independently for each dimension.

2. Normalize

\[
\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}
\]
Batch Normalization

Problem: do we necessarily want a unit gaussian input to the nonlinear layer?

\[
\hat{x}(k) = \frac{x(k) - E[x(k)]}{\sqrt{\text{Var}[x(k)]}}
\]
Batch Normalization

Normalize:

\[\hat{x}(k) = \frac{x(k) - E[x(k)]}{\sqrt{\text{Var}[x(k)]}} \]

And then allow the network to squash the range if it wants to:

\[y(k) = \gamma(k) \hat{x}(k) + \beta(k) \]

Note, the network can learn:

\[\gamma(k) = \sqrt{\text{Var}[x(k)]} \]
\[\beta(k) = E[x(k)] \]

to recover the identity mapping.
Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_1...m\}$; Parameters to be learned: γ, β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

\[
\begin{align*}
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad // \text{mini-batch mean} \\
\sigma_{\mathcal{B}}^2 & \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2 \quad // \text{mini-batch variance} \\
\hat{x}_i & \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \quad // \text{normalize} \\
y_i & \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i) \quad // \text{scale and shift}
\end{align*}
\]

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization in a funny way, and slightly reduces the need for dropout, maybe
Batch Normalization

[loffe and Szegedy, 2015]

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_1,...,x_m\}$;
Parameters to be learned: γ, β

Output: $\{y_i = \text{BN}_{\gamma,\beta}(x_i)\}$

\[
\begin{align*}
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad \text{// mini-batch mean} \\
\sigma_{\mathcal{B}}^2 & \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2 \quad \text{// mini-batch variance} \\
\hat{x}_i & \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \quad \text{// normalize} \\
y_i & \leftarrow \gamma\hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) \quad \text{// scale and shift}
\end{align*}
\]

Note: at test time BatchNorm layer functions differently:

The mean/std are not computed based on the batch. Instead, a single fixed empirical mean of activations during training is used.
(e.g. can be estimated during training with running averages)
Fun Tips/Tricks:

1. Train multiple independent models
2. At test time average their results
=> Enjoy 2% extra performance

- can also get a small boost from averaging multiple model checkpoints of a single model.
- keep track of (and use at test time) a running average parameter vector:

```
while True:
    data_batch = dataset.sample_data_batch()
    loss = network.forward(data_batch)
    dx = network.backward()
    x += -learning_rate * dx
    x_test = 0.995*x_test + 0.005*x  # use for test set
```
Regularization: **Dropout**

“randomly set some neurons to zero in the forward pass”

(a) Standard Neural Net
(b) After applying dropout.

[Srivastava et al., 2014]
Regularization: **DisturbLabel**

“randomly change ground truth label of small % of examples”

=> Improves generalization, reduces need for dropout
Case Study: GoogLeNet

[Case Study: GoogLeNet](Szegedy et al., 2014)

Inception module

ILSVRC 2014 winner (6.7% top 5 error)
Case Study: GoogLeNet

Fun features:
- Only 5 million params! (Removes FC layers completely)

Compared to AlexNet:
- 12X less params
- 2x more compute
- 6.67% (vs. 16.4%)
Case Study: ResNet \cite{He2015}

ILSVRC 2015 winner (3.6% top 5 error)

MSRA @ ILSVRC & COCO 2015 Competitions

- **1st places** in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) **152-layer** nets
 - ImageNet Detection: **16%** better than 2nd
 - ImageNet Localization: **27%** better than 2nd
 - COCO Detection: **11%** better than 2nd
 - COCO Segmentation: **12%** better than 2nd

*improvements are relative numbers

Slide from Kaiming He's recent presentation https://www.youtube.com/watch?v=1PGLj-uKT1w
Revolution of Depth

152 layers

ImageNet Classification top-5 error (%)

ILSVRC'15 ResNet
ILSVRC'14 GoogleNet
ILSVRC'14 VGG
ILSVRC'13
ILSVRC'12 AlexNet
ILSVRC'11 shallow
ILSVRC'10

3.57
6.7
7.3
11.7
16.4
25.8
28.2

(slide from Kaiming He’s recent presentation)
CIFAR-10 experiments

CIFAR-10 plain nets

- 56-layer
- 44-layer
- 32-layer
- 20-layer

solid: test
dashed: train

CIFAR-10 ResNets

- 20-layer
- 32-layer
- 44-layer
- 56-layer
- 110-layer
Case Study: ResNet [He et al., 2015]

ILSVRC 2015 winner (3.6\% top 5 error)

2-3 weeks of training on 8 GPU machine

at runtime: faster than a VGGNet! (even though it has 8x more layers)

(slide from Kaiming He’s recent presentation)
Case Study: ResNet

[He et al., 2015]
Case Study: ResNet [He et al., 2015]

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used
Case Study: ResNet [He et al., 2015]

- **all-3x3**: Simplified structure with all 3x3 convolutions.
- **bottleneck**: More complex with 1x1 convolutions, used for ResNet-50/101/152.

Diagram shows the flow of data through layers, with 64-d and 256-d representations, followed by relu activations.

Flowchart indicates the transformation and addition of layers, highlighting the contrast between all-3x3 and bottleneck architectures.

Slide Credit: Case Study: ResNet [He et al., 2015]
Case Study: ResNet [He et al., 2015]

(this trick is also used in GoogLeNet)
Case Study: ResNet \[\text{[He et al., 2015]}\]

<table>
<thead>
<tr>
<th>layer name</th>
<th>output size</th>
<th>18-layer</th>
<th>34-layer</th>
<th>50-layer</th>
<th>101-layer</th>
<th>152-layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv1</td>
<td>112x112</td>
<td></td>
<td></td>
<td>7x7, 64, stride 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3x3 max pool, stride 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv2_x</td>
<td>56x56</td>
<td>[3x3, 64] x2</td>
<td>[3x3, 64] x3</td>
<td>[1x1, 64]</td>
<td>[1x1, 64]</td>
<td>[1x1, 64]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[3x3, 64]</td>
<td>[3x3, 64]</td>
<td>3x3, 64</td>
<td>3x3, 64</td>
<td>3x3, 64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1x1, 128</td>
<td>1x1, 128</td>
<td>1x1, 128</td>
</tr>
<tr>
<td>conv3_x</td>
<td>28x28</td>
<td>[3x3, 128] x2</td>
<td>[3x3, 128] x4</td>
<td>[1x1, 512]</td>
<td>[1x1, 512]</td>
<td>[1x1, 512]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[3x3, 128]</td>
<td>[3x3, 128]</td>
<td>3x3, 128</td>
<td>3x3, 128</td>
<td>3x3, 128</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1x1, 256</td>
<td>1x1, 256</td>
<td>1x1, 256</td>
</tr>
<tr>
<td>conv4_x</td>
<td>14x14</td>
<td>[3x3, 256] x2</td>
<td>[3x3, 256] x6</td>
<td>[1x1, 256]</td>
<td>[1x1, 256]</td>
<td>[1x1, 256]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[3x3, 256]</td>
<td>[3x3, 256]</td>
<td>3x3, 256</td>
<td>3x3, 256</td>
<td>3x3, 256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1x1, 1024</td>
<td>1x1, 1024</td>
<td>1x1, 1024</td>
</tr>
<tr>
<td>conv5_x</td>
<td>7x7</td>
<td>[3x3, 512] x2</td>
<td>[3x3, 512] x3</td>
<td>[1x1, 512]</td>
<td>[1x1, 512]</td>
<td>[1x1, 512]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[3x3, 512]</td>
<td>[3x3, 512]</td>
<td>3x3, 512</td>
<td>3x3, 512</td>
<td>3x3, 512</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1x1, 2048</td>
<td>1x1, 2048</td>
<td>1x1, 2048</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1x1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average pool, 1000-d fc, softmax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLOPs</td>
<td>1.8x10^9</td>
<td>3.6x10^9</td>
<td>3.8x10^9</td>
<td>7.6x10^9</td>
<td>11.3x10^9</td>
<td></td>
</tr>
</tbody>
</table>
Case Study Bonus: DeepMind’s AlphaGo
The input to the policy network is a 19 × 19 × 48 image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 × 23 image, then convolves k filters of kernel size 5 × 5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21 × 21 image, then convolves k filters of kernel size 3 × 3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1 × 1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used $k = 192$ filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with $k = 128, 256$ and 384 filters.

policy network:

[19x19x48] Input
CONV1: 192 5x5 filters, stride 1, pad 2 => [19x19x192]
CONV2..12: 192 3x3 filters, stride 1, pad 1 => [19x19x192]
CONV: 1 1x1 filter, stride 1, pad 0 => [19x19] (*probability map of promising moves*)
Computer Vision Tasks

Classification

Classification + Localization

Object Detection

Instance Segmentation

Single object

Multiple objects

CAT

CAT

CAT, DOG, DUCK

CAT, DOG, DUCK
Computer Vision Tasks

- **Classification**
- **Classification + Localization**
- **Object Detection**
- **Instance Segmentation**

Images illustrating each task:
- Left: A cat, highlighting its classification.
- Middle: A cat with a bounding box, highlighting localization.
- Right: A dog with multiple bounding boxes, illustrating object detection.
- Far right: A bucket with two cats and a dog, demonstrating instance segmentation.
Classification + Localization: Task

Classification: C classes
- **Input**: Image
- **Output**: Class label
- **Evaluation metric**: Accuracy

Localization:
- **Input**: Image
- **Output**: Box in the image (x, y, w, h)
- **Evaluation metric**: Intersection over Union

Classification + Localization: Do both
Classification + Localization: ImageNet

1000 classes (same as classification)

Each image has 1 class, at least one bounding box

~800 training images per class

Algorithm produces 5 (class, box) guesses

Example is correct if at least one guess has correct class AND bounding box at least 0.5 intersection over union (IoU)

Krizhevsky et. al. 2012
Idea #1: Localization as Regression

Input: image

Output:
- Box coordinates (4 numbers)

Correct output:
- box coordinates (4 numbers)

Loss:
- L2 distance

Only one object, simpler than detection
Simple Recipe for Classification + Localization

Step 1: Train (or download) a classification model (AlexNet, VGG, GoogLeNet)

- Convolution and Pooling
- Fully-connected layers
- Final conv feature map
- Class scores
- Softmax loss
Simple Recipe for Classification + Localization

Step 2: Attach new fully-connected “regression head” to the network
Simple Recipe for Classification + Localization

Step 3: Train the regression head only with SGD and L2 loss
Step 4: At test time use both heads

Simple Recipe for Classification + Localization
Per-class vs class agnostic regression

Assume classification over C classes:

Classification head:
- C numbers (one per class)

Class agnostic:
- 4 numbers (one box)

Class specific:
- \(C \times 4 \) numbers (one box per class)
Where to attach the regression head?

- After conv layers: Overfeat, VGG
- After last FC layer: DeepPose, R-CNN
Aside: Localizing multiple objects

Want to localize **exactly** K objects in each image

(e.g. whole cat, cat head, cat left ear, cat right ear for $K=4$)
Aside: Human Pose Estimation

Represent a person by K joints

Regress (x, y) for each joint from last fully-connected layer of AlexNet

(Details: Normalized coordinates, iterative refinement)

Localization as Regression

Very simple

Think if you can use this for projects
Idea #2: Sliding Window

- Run classification + regression network at multiple locations on a high-resolution image

- Convert fully-connected layers into convolutional layers for efficient computation

- Combine classifier and regressor predictions across all scales for final prediction
Sliding Window: Overfeat

Image: 3 x 221 x 221

Convolution + pooling

Feature map: 1024 x 5 x 5

Winner of ILSVRC 2013 localization challenge

4096 - FC - 4096 - FC - Class scores: 1000

Softmax loss

4096 - FC - 1024 - FC - Boxes: 1000 x 4

Euclidean loss

Sliding Window: Overfeat

Network input:
3 x 221 x 221

Larger image:
3 x 257 x 257
Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Classification scores: $P(\text{cat}) = 0.5$
Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Classification scores: P(cat)
Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Classification scores: P(cat)

<table>
<thead>
<tr>
<th>0.5</th>
<th>0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>
Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Classification scores: P(cat)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.75</td>
</tr>
<tr>
<td>0.6</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Sliding Window: Overfeat

Network input:
3 x 221 x 221

Larger image:
3 x 257 x 257

Classification scores:
P(cat)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.75</td>
</tr>
<tr>
<td>0.6</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Sliding Window: Overfeat

Greedily merge boxes and scores (details in paper)

Network input:
3 x 221 x 221

Larger image:
3 x 257 x 257

Classification score:
P(cat) = 0.8
Sliding Window: Overfeat

In practice use many sliding window locations and multiple scales

Window positions + score maps
Box regression outputs
Final Predictions

Efficient Sliding Window: Overfeat

Convolution + pooling

Image: 3 x 221 x 221

Feature map: 1024 x 5 x 5

4096

Class scores: 1000

1024

Boxes: 1000 x 4

4096

4096

FC

1024

FC

FC
Efficient Sliding Window: Overfeat

Efficient sliding window by converting fully-connected layers into convolutions

Image: 3 x 221 x 221

Convolution + pooling

Feature map: 1024 x 5 x 5

4096 x 1 x 1

5 x 5 conv

1024 x 1 x 1

1 x 1 conv

5 x 5 conv

1024 x 1 x 1

1 x 1 conv

4096 x 1 x 1

1 x 1 conv

1024 x 1 x 1

Box coordinates: (4 x 1000) x 1 x 1

Class scores: 1000 x 1 x 1

1 x 1 conv
Efficient Sliding Window: Overfeat

Training time: Small image, 1 x 1 classifier output

Test time: Larger image, 2 x 2 classifier output, only extra compute at yellow regions

ImageNet Classification + Localization

Localization Error (Top 5)

- **AlexNet**: Localization method not published
- **Overfeat**: Multiscale convolutional regression with box merging
- **VGG**: Same as Overfeat, but fewer scales and locations; simpler method, gains all due to deeper features
- **ResNet**: Different localization method (RPN) and much deeper features
Computer Vision Tasks

Classification

Classification + Localization

Object Detection

Instance Segmentation
Computer Vision Tasks

- Classification
- Classification + Localization
- Object Detection
- Instance Segmentation

Images showing examples of each task:
Detection as Regression?

DOG, (x, y, w, h)
CAT, (x, y, w, h)
CAT, (x, y, w, h)
DUCK (x, y, w, h)

= 16 numbers
Detection as Regression?

DOG, (x, y, w, h)
CAT, (x, y, w, h)

= 8 numbers
Detection as Regression?

CAT, (x, y, w, h)
CAT, (x, y, w, h)
....
CAT (x, y, w, h)
= many numbers

Need variable sized outputs
Detection as Classification

CAT? NO

DOG? NO
Detection as Classification

CAT? YES!
DOG? NO
Detection as Classification

CAT? NO

DOG? NO
Detection as Classification

Problem: Need to test many positions and scales

Solution: If your classifier is fast enough, just do it
Histogram of Oriented Gradients

- Compute HOG of the whole image at multiple resolutions
- Score every subwindow of the feature pyramid
- Apply non-maxima suppression

Dalal and Triggs, “Histograms of Oriented Gradients for Human Detection”, CVPR 2005
Slide credit: Ross Girshick
Deformable Parts Model (DPM)

Aside: Deformable Parts Models are CNNs?

Girschick et al, “Deformable Part Models are Convolutional Neural Networks”, CVPR 2015
Detection as Classification

Problem: Need to test many positions and scales, and use a computationally demanding classifier (CNN)

Solution: Only look at a tiny subset of possible positions
Region Proposals

- Find “blobby” image regions that are likely to contain objects
- “Class-agnostic” object detector
- Look for “blob-like” regions
Region Proposals: Selective Search

Bottom-up segmentation, merging regions at multiple scales

Region Proposals: Many other choices

<table>
<thead>
<tr>
<th>Method</th>
<th>Approach</th>
<th>Outputs</th>
<th>Outputs</th>
<th>Control</th>
<th>Time (sec.)</th>
<th>Repeatability</th>
<th>Recall Results</th>
<th>Detection Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bing [18]</td>
<td>Window scoring</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.2</td>
<td>***</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>CPMC [19]</td>
<td>Grouping</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>250</td>
<td>-</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>EdgeBoxes [20]</td>
<td>Window scoring</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.3</td>
<td>**</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Endres [21]</td>
<td>Grouping</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>100</td>
<td>-</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>Geodesic [22]</td>
<td>Grouping</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>1</td>
<td>*</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>MCG [23]</td>
<td>Grouping</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>30</td>
<td>*</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>Objectness [24]</td>
<td>Window scoring</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Rahtu [25]</td>
<td>Window scoring</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RandomizedPrim’s [26]</td>
<td>Grouping</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Rantalankila [27]</td>
<td>Grouping</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>10</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Rigor [28]</td>
<td>Grouping</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>10</td>
<td>*</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>SelectiveSearch [29]</td>
<td>Grouping</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>10</td>
<td>**</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Gaussian</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>SlidingWindow</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>0</td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superpixels</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>1</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hosang et al, “What makes for effective detection proposals?”, PAMI 2015
Region Proposals: Many other choices

<table>
<thead>
<tr>
<th>Method</th>
<th>Approach</th>
<th>Outputs</th>
<th>Outputs</th>
<th>Control #proposals</th>
<th>Time (sec.)</th>
<th>Repeatability</th>
<th>Recall Results</th>
<th>Detection Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bing [18]</td>
<td>Window scoring</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.2</td>
<td>***</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>CPMC [19]</td>
<td>Grouping</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>250</td>
<td>-</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>EdgeBoxes [20]</td>
<td>Window scoring</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.3</td>
<td>**</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Endres [21]</td>
<td>Grouping</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>100</td>
<td>-</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>Geodesic [22]</td>
<td>Grouping</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>1</td>
<td>*</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>MCG [23]</td>
<td>Grouping</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>30</td>
<td>*</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>Objectness [24]</td>
<td>Window scoring</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3</td>
<td>-</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Rahtu [25]</td>
<td>Window scoring</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3</td>
<td>-</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RandomizedPrim’s [26]</td>
<td>Grouping</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Rantalanikila [27]</td>
<td>Grouping</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>10</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Rigor [28]</td>
<td>Grouping</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>10</td>
<td>*</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>SelectiveSearch [29]</td>
<td>Grouping</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>10</td>
<td>**</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Gaussian</td>
<td></td>
<td>✓</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SlidingWindow</td>
<td></td>
<td>✓</td>
<td>0</td>
<td></td>
<td>0</td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superpixels</td>
<td></td>
<td>✓</td>
<td>1</td>
<td></td>
<td>1</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform</td>
<td></td>
<td>✓</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hosang et al, “What makes for effective detection proposals?”, PAMI 2015
Putting it together: R-CNN

Slide credit: Ross Girshick
R-CNN Training

Step 1: Train (or download) a classification model for ImageNet (AlexNet)

1. **Image**
2. **Convolution and Pooling**
3. **Final conv feature map**
4. **Fully-connected layers**
5. **Class scores 1000 classes**
6. **Softmax loss**
R-CNN Training

Step 2: Fine-tune model for detection
- Instead of 1000 ImageNet classes, want 20 object classes + background
- Throw away final fully-connected layer, reinitialize from scratch
- Keep training model using positive / negative regions from detection images

![Diagram](image)

- Convolution and Pooling
- Final convolution feature map
- Fully-connected layers
- Class scores: 21 classes
- Softmax loss
- Re-initialize this layer: was 4096 x 1000, now will be 4096 x 21
R-CNN Training

Step 3: Extract features
- Extract region proposals for all images
- For each region: warp to CNN input size, run forward through CNN, save pool5 features to disk
- Have a big hard drive: features are ~200GB for PASCAL dataset!
R-CNN Training

Step 4: Train one binary SVM per class to classify region features

- **Training image regions**
 - Positive samples for cat SVM
 - Negative samples for cat SVM

- **Cached region features**
R-CNN Training

Step 4: Train one binary SVM per class to classify region features

Training image regions

Cached region features

Negative samples for dog SVM

Positive samples for dog SVM
R-CNN Training

Step 5 (bbox regression): For each class, train a linear regression model to map from cached features to offsets to GT boxes to make up for “slightly wrong” proposals.

- **Training image regions**
- **Cached region features**
- **Regression targets**
 - (dx, dy, dw, dh)
 - Normalized coordinates
 - (0, 0, 0, 0) Proposal is good
 - (.25, 0, 0, 0) Proposal too far to left
 - (0, 0, -0.125, 0) Proposal too wide
Object Detection: Datasets

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of classes</td>
<td>20</td>
<td>200</td>
<td>80</td>
</tr>
<tr>
<td>Number of images (train + val)</td>
<td>~20k</td>
<td>~470k</td>
<td>~120k</td>
</tr>
<tr>
<td>Mean objects per image</td>
<td>2.4</td>
<td>1.1</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Object Detection: Evaluation

We use a metric called “mean average precision” (mAP)

Compute average precision (AP) separately for each class, then average over classes

A detection is a true positive if it has IoU with a ground-truth box greater than some threshold (usually 0.5) (mAP@0.5)

Combine all detections from all test images to draw a precision / recall curve for each class; AP is area under the curve

TL;DR mAP is a number from 0 to 100; high is good
R-CNN Results

R-CNN Results

Big improvement compared to pre-CNN methods

![Bar Chart]

Mean Average Precision (mAP)

- DPM (2011): 33.7 / 29.6
- Regionlets (2013): 41.7 / 39.7
- R-CNN (2014, AlexNet): 54.2 / 50.2
- R-CNN + bbox reg (AlexNet): 58.5 / 53.7
- R-CNN (VGG-16): 66 / 62.9

VOC 2007
VOC 2010
R-CNN Results

Bounding box regression helps a bit

Mean Average Precision (mAP)

- DPM (2011): 33.7, 29.6
- Regionlets (2013): 41.7, 39.7
- R-CNN (2014, AlexNet): 54.2, 50.2
- R-CNN + bbox reg (AlexNet): 58.5, 53.7
- R-CNN (VGG-16): 66, 62.9

VOC 2007
VOC 2010
R-CNN Results

Features from a deeper network help a lot

Mean Average Precision (mAP)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC 2007</td>
<td>33.7</td>
<td>41.7</td>
<td>54.2</td>
<td>58.5</td>
<td>66</td>
</tr>
<tr>
<td>VOC 2010</td>
<td>29.6</td>
<td>39.7</td>
<td>50.2</td>
<td>53.7</td>
<td>62.9</td>
</tr>
</tbody>
</table>
R-CNN Problems

1. Slow at test-time: need to run full forward pass of CNN for each region proposal

2. SVMs and regressors are post-hoc: CNN features not updated in response to SVMs and regressors

3. Complex multistage training pipeline
Fast R-CNN (test time)

Regions of Interest (Rois) from a proposal method

ConvNet

Forward whole image through ConvNet

"Conv5" feature map of image

"RoI Pooling" (single-level SPP) layer

Fully-connected layers

Linear

Bounding-box regressors

Linear + softmax

Softmax classifier

Slide credit: Ross Girshick
Fast R-CNN (test time)

R-CNN Problem #1:
Slow at test-time due to independent forward passes of the CNN

Solution:
Share computation of convolutional layers between proposals for an image
R-CNN Problem #2: Post-hoc training: CNN not updated in response to final classifiers and regressors

R-CNN Problem #3: Complex training pipeline

Solution: Just train the whole system end-to-end all at once!
Fast R-CNN: Region of Interest Pooling

Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: C x H x W with region proposal

Problem: Fully-connected layers expect low-res conv features: C x h x w
Fast R-CNN: Region of Interest Pooling

Problem: Fully-connected layers expect low-res conv features: $C \times h \times w$

Hi-res input image: $3 \times 800 \times 600$

Hi-res conv features: $C \times H \times W$

Fully-connected layers

Project region proposal onto conv feature map

Convolution and Pooling

Project region proposal with region proposal
Fast R-CNN: Region of Interest Pooling

Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: C x H x W with region proposal

Divide projected region into h x w grid

Problem: Fully-connected layers expect low-res conv features: C x h x w

Convolution and Pooling

Fully-connected layers
Fast R-CNN: Region of Interest Pooling

Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: C x H x W with region proposal

Max-pool within each grid cell

RoI conv features: C x h x w for region proposal

Fully-connected layers expect low-res conv features: C x h x w
Fast R-CNN: Region of Interest Pooling

Hi-res input image:
3 x 800 x 600
with region proposal

Hi-res conv features:
C x H x W
with region proposal

Convolution and Pooling

Can back propagate similar to max pooling

Rol conv features:
C x h x w
for region proposal

Fully-connected layers expect
low-res conv features:
C x h x w

Fully-connected layers
Fast R-CNN Results

<table>
<thead>
<tr>
<th></th>
<th>R-CNN</th>
<th>Fast R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Time:</td>
<td>84 hours</td>
<td>9.5 hours</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>8.8x</td>
</tr>
</tbody>
</table>

Faster!

Using VGG-16 CNN on Pascal VOC 2007 dataset
<table>
<thead>
<tr>
<th></th>
<th>R-CNN</th>
<th>Fast R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Time:</td>
<td>84 hours</td>
<td>9.5 hours</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>8.8x</td>
</tr>
<tr>
<td>Test time per image</td>
<td>47 seconds</td>
<td>0.32 seconds</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>146x</td>
</tr>
</tbody>
</table>

Using VGG-16 CNN on Pascal VOC 2007 dataset
Fast R-CNN Results

<table>
<thead>
<tr>
<th></th>
<th>R-CNN</th>
<th>Fast R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Time:</td>
<td>84 hours</td>
<td>9.5 hours</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>8.8x</td>
</tr>
<tr>
<td>Test time per image</td>
<td>47 seconds</td>
<td>0.32 seconds</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>146x</td>
</tr>
<tr>
<td>mAP (VOC 2007)</td>
<td>66.0</td>
<td>66.9</td>
</tr>
</tbody>
</table>

Using VGG-16 CNN on Pascal VOC 2007 dataset
Fast R-CNN Problem:

Test-time speeds don’t include region proposals

<table>
<thead>
<tr>
<th></th>
<th>R-CNN</th>
<th>Fast R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test time per image</td>
<td>47 seconds</td>
<td>0.32 seconds</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>146x</td>
</tr>
<tr>
<td>Test time per image with Selective Search</td>
<td>50 seconds</td>
<td>2 seconds</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>25x</td>
</tr>
</tbody>
</table>
Fast R-CNN Problem Solution:

Test-time speeds don’t include region proposals
Just make the CNN do region proposals too!

<table>
<thead>
<tr>
<th></th>
<th>R-CNN</th>
<th>Fast R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test time per image</td>
<td>47 seconds</td>
<td>0.32 seconds</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>146x</td>
</tr>
<tr>
<td>Test time per image</td>
<td>50 seconds</td>
<td>2 seconds</td>
</tr>
<tr>
<td>with Selective Search</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>25x</td>
</tr>
</tbody>
</table>
Faster R-CNN:

Insert a **Region Proposal Network (RPN)** after the last convolutional layer

RPN trained to produce region proposals directly; no need for external region proposals!

After RPN, use RoI Pooling and an upstream classifier and bbox regressor just like Fast R-CNN

Slide credit: Ross Girshick
Faster R-CNN: Region Proposal Network

Slide a small window on the feature map

Build a small network for:
- classifying object or not-object, and
- regressing bbox locations

Position of the sliding window provides localization information with reference to the image

Box regression provides finer localization information with reference to this sliding window

Slide credit: Kaiming He
Faster R-CNN: Region Proposal Network

Use **N anchor boxes** at each location

Anchors are **translation invariant**: use the same ones at every location

Regression gives offsets from anchor boxes

Classification gives the probability that each (regressed) anchor shows an object
Faster R-CNN: Training

In the paper: Ugly pipeline
- Use alternating optimization to train RPN, then Fast R-CNN with RPN proposals, etc.
- More complex than it has to be

Since publication: Joint training!
One network, four losses
- RPN classification (anchor good / bad)
- RPN regression (anchor -> proposal)
- Fast R-CNN classification (over classes)
- Fast R-CNN regression (proposal -> box)
Faster R-CNN: Results

<table>
<thead>
<tr>
<th></th>
<th>R-CNN</th>
<th>Fast R-CNN</th>
<th>Faster R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test time per image (with proposals)</td>
<td>50 seconds</td>
<td>2 seconds</td>
<td>0.2 seconds</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>25x</td>
<td>250x</td>
</tr>
<tr>
<td>mAP (VOC 2007)</td>
<td>66.0</td>
<td>66.9</td>
<td>66.9</td>
</tr>
</tbody>
</table>
Object Detection State-of-the-art: ResNet 101 + Faster R-CNN + some extras

<table>
<thead>
<tr>
<th>Training data</th>
<th>COCO train</th>
<th>COCO trainval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test data</td>
<td>COCO val</td>
<td>COCO test-dev</td>
</tr>
<tr>
<td>mAP baseline Faster R-CNN (VGG-16)</td>
<td>@.5 21.2</td>
<td>@.5 21.2</td>
</tr>
<tr>
<td>baseline Faster R-CNN (ResNet-101)</td>
<td>48.4 27.2</td>
<td>53.3 32.2</td>
</tr>
<tr>
<td>+box refinement</td>
<td>49.9 29.9</td>
<td>55.7 34.9</td>
</tr>
<tr>
<td>+context</td>
<td>51.1 30.0</td>
<td>53.3 32.2</td>
</tr>
<tr>
<td>+multi-scale testing</td>
<td>53.8 32.5</td>
<td>55.7 34.9</td>
</tr>
<tr>
<td>Ensemble</td>
<td>59.0 37.4</td>
<td></td>
</tr>
</tbody>
</table>

ImageNet Detection 2013 - 2015

ImageNet Detection (mAP)

- NeoNet ensemble (2015): 53.57
- Faster R-CNN single (2015): 42.94
- GoogleNet ensemble (2014): 43.93
- NUS ensemble (2014): 37.21
- SPP ensemble (2014): 35.11
- UvA-Eur vision (2013): 22.56
- Overfeat (2013): 19.4
YOLO: You Only Look Once
Detection as Regression

Divide image into $S \times S$ grid

Within each grid cell predict:
- B Boxes: 4 coordinates + confidence
- Class scores: C numbers

Regression from image to
$7 \times 7 \times (5 \times B + C)$ tensor

Direct prediction using a CNN

YOLO: You Only Look Once
Detection as Regression

Faster than Faster R-CNN, but not as good