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Is	this	about	where?	



Is	this	sufficient?





Is	this	about	what?	

GoogLeNet, 2014-2016
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3D	reconstruction	from	images

3D	Scene	Understanding

• The	SFM	problem
• Affine	SFM
• Perspective	SFM
• Bundle	Adjustment

• Motivation
• Single	view	3D	scene	understanding
• Multi-views	3D	scene	understanding	
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Courtesy of Oxford Visual Geometry Group

Structure	from	motion	problem



Structure	from	motion	problem

x1j

x2j
xmj

Xj

M1

M2

Mm

Given	m images	of	n fixed	3D	points	

•xij =	Mi	Xj	,	 i	=	1,	…	,	m,				j	=	1,	…	,	n		
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Projective	cameras
• Parallel	lines	are	projected	as	converging	lines!
• Distant	objects	look	small!



From	the	mxn observations	xij,	estimate:	
•m projection	matrices	Mi

•n 3D	points	Xj

x1j

x2j
xmj

Xj

motion
structure

M1

M2

Mm

Structure	from	motion	problem



3D	reconstruction	from	images

3D	Scene	Understanding

• The	SFM	problem
• Affine	SFM
• Perspective	SFM
• Bundle	Adjustment

• Motivation
• Single	view	3D	scene	understanding
• Multi-views	3D	scene	understanding	



Orthographic	(affine)	projection
Distance	from	center	of	projection		to	image	plane	is	infinite
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Projection	of	a	cube	with	affine	cameras



Xj

xij =AiX j +bi

Affine	cameras

For	the	affine	case	(in	Euclidean	space)

xi	j

x1j

Image	i

Image	1

[Eq.	4]

2x1 2x3 2x13x1



The	Affine	Structure-from-Motion	Problem

Given	m images	of	n fixed	points	Xj we	can	write

Problem:	estimate	m	matrices	Ai,	m	matrices	bi
and	the	n	positions	Xj from	the	m´n observations	xij .

2m	´n	equations	in	8m	+	3n	- 9	unknowns

How	many	equations	and	how	many	unknown?

N.	of	cameras N.	of	points
xij =AiX j +bi for	i =	1,	…,m			and	j	=	1,	…	,n



A	factorization	method	–
Tomasi	&	Kanade	algorithm

C.	Tomasi and	T.	KanadeShape and	motion	from	image	streams	under	orthography:		A	factorization	method. IJCV,	
9(2):137-154,	November	1992.	

• Data	centering
• Factorization	



Centering:	subtract	the	centroid of	the	image	points

A	factorization	method		- Centering	the	data

xik
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[Eq.	6]
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[Eq.	5]
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Centering:	subtract	the	centroid	of	the	image	points

A	factorization	method		- Centering	the	data

ikiik bXAx +=

å
=
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[Eq.	4]
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Centering:	subtract	the	centroid	of	the	image	points

A	factorization	method		- Centering	the	data
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Centroid	of	3D	points

ikiik bXAx +=
[Eq.	4]
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A	factorization	method		- Centering	the	data

xik

X
Xk

X = 1
n

Xk
k=1

n

∑
Centroid	of	3D	points

xi =
1
n

xik
k=1

n

∑

xi

jiij XAx ˆˆ =

Thus,	after	centering,	each	normalized	observed	point	is	related	to	the	3D	point	by

[Eq.	8]

[Eq.	7]



A	factorization	method		- Centering	the	data

xik

Xk

X = 1
n

Xk
k=1

n

∑
Centroid	of	3D	points

xi =
1
n

xik
k=1

n

∑

xi

X

=AiX j

If	the	centroid	of	points	in	3D	=	center	of	the	world	reference	system

[Eq.	9]jiij XAx ˆˆ =

[Eq.	7]
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A	factorization	method		- factorization
Let’s	create	a	2m	´ n data	(measurement)	matrix:

Each								entry	is	a	2x1	vector!x̂ij



Let’s	create	a	2m	´ n data	(measurement)	matrix:

[ ]n

mmnmm

n

n

XXX

A

A
A

xxx

xxx
xxx

D !
"

!
#
!
!

21
2

1

21

22221

11211

ˆˆˆ

ˆˆˆ
ˆˆˆ

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

cameras
(2m	× 3)

points	(3 × n	)

The	measurement	matrix D	=	M	S	has	rank	3
(it’s	a	product	of		a	2mx3	matrix	and	3xn	matrix)

A	factorization	method		- factorization

(2m	× n) M
S

Each								entry	is	a	2x1	vector!
Ai is	2x3	and	Xj is	3x1

x̂ij

[Eq.	10]



Factorizing	the	Measurement	Matrix

= ×

2m

n 3

n

3Measurements	D Motion
M

Structure
S

D =MS



• How	to	factorize	D?	By	computing	the	Singular	value	
decomposition	of	D!

=2m

n n

n n

× × n

D U W VT

Factorizing	the	Measurement	Matrix



Since	rank	(D)=3,	there	are	only	3	non-zero	singular	values	σ1 ,	σ2 and	σ3

Factorizing	the	Measurement	Matrix

Where W3 =

σ1 0 0
0 σ 2 0
0 0 σ 3
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[Eq.	11]



Factorizing	the	Measurement	Matrix



M =	Motion	(cameras)	

S =	structure

Factorizing	the	Measurement	Matrix

D =	U3 W3 V3
T =	U3 (W3 V3

T)	=	M S [Eq.	12]



Theorem:When							has	a	rank	greater	than																										is	the	best	
possible	rank- approximation	of	D in	the	sense	of	the	Frobenius norm.

D 3,  U3W3V3
T

3

3 3 3
T=D U W V

M ≈ U3      

S ≈W3V3
T

"
#
$

%$

What	is	the	issue	here?	

Factorizing	the	Measurement	Matrix

• measurement	noise	
• affine	approximation

D has	rank>3	because	of:	

D =	U3 W3 V3
T =	U3 (W3 V3

T)	=	M S [Eq.	12]



Reconstruction	results

C.	Tomasi and	T.	Kanade.	Shape	and	motion	from	image	streams	under	orthography:	
A	factorization	method. IJCV,	9(2):137-154,	November	1992.	



Affine	Ambiguity

=D M S



Affine	Ambiguity

• The	decomposition	is	not	unique.	We	get	the	same	D	by	applying	
the	transformations:

M*	= M	H
S*	=	H-1S

where	H	is	an	arbitrary	3x3	matrix	describing	an	affine	transformation

• Additional	constraints	must	be	enforced	to	resolve	this	ambiguity

= ×D M SH H-1

M* S*



Affine	Ambiguity

S*	=	H-1S
A*	=	A	H

A’*	=	A’	H

A
A’

S



Similarity	Ambiguity

• The	ambiguity	exists	even	for	(intrinsically)	calibrated	cameras
• For	calibrated	cameras,	the	similarity	ambiguity	is	the only	ambiguity

[Longuet-Higgins ’81]

• The scene is determined by the images only up a similarity
transformation (rotation, translation and scaling)

• This is calledmetric reconstruction

Similarity



• It	is	impossible,	based	on	the	images	alone,	to	estimate	the	
absolute	scale	of	the	scene

Similarity	Ambiguity



• Factorization	methods	assume	all	points	are	
visible.	Untrue	when:

• occlusions	occur
• failure	in	establishing	correspondences

• Affine	approximation	is	often	too	crude	when:
• objects	are	close	to	camera

Limitations



3D	reconstruction	from	images

3D	Scene	Understanding

• The	SFM	problem
• Affine	SFM
• Perspective	SFM
• Bundle	Adjustment

• Motivation
• Single	view	3D	scene	understanding
• Multi-views	3D	scene	understanding	



Structure	from	motion	problem

x1j

x2j
xmj

Xj

M1

M2

Mm

From	the	mxn observations	xij,	estimate:	
•m projection	matrices	Mi

•n 3D	points	Xj

=	motion
=	structure



Structure	from	motion	problem
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Bundle	adjustment
• Non-linear	method	for	refining	structure	and	motion
• Minimizes	re-projection	error

( )
2m

1i

n

1j
jiij M,D),M(E åå

= =

= XxX

x1j

x2j

xmj

Reconstructed	Xj

O1

O2

Om

M1Xj

M2Xj
MmXj

ground	truth	Xj



measurements
parameters

D	is	the	nonlinear	mapping

- Newton	Method
- Levenberg-Marquardt	Algorithm

• Iterative,	starts	from	initial	solution	
• May	be	slow	if	initial	solution	far	from	real	solution	
• Estimated	solution	may	be	function	of	the	initial	solution
• Newton	requires	the	computation	of	J,	H
• Levenberg-Marquardt	doesn’t	require	the	computation	of	H

General	Calibration	Problem

( )
2m

1i

n

1j
jiij M,D),M(E åå

= =

= XxX



• Advantages
• Handle	large	number	of	views
• Handle	missing	data

• Limitations
• Large	minimization	problem	(parameters	grow	with	number	of	views)

• Requires	good	initial	condition

• Used	as	the	final	step	of	SFM	(i.e.,	after	the	factorization	or	
algebraic	approach)	

• Factorization	or	algebraic	approaches	provide	a	initial	
solution	for	optimization	problem

Bundle	adjustment



3D	reconstruction	from	multiple	views

52

Snavely
et	al.,	06-08



3D	reconstruction	from	multiple	views
Snavely

et	al.,	06-08



3D	reconstruction	from	images

3D	Scene	Understanding

• The	SFM	problem
• Affine	SFM
• Perspective	SFM
• Bundle	Adjustment

• Motivation
• Single	view	3D	scene	understanding
• Multi-views	3D	scene	understanding	
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Why	is	this	important?



Cherries	or	watermelon?



Cherries	or	watermelon?



Biederman,	Mezzanotte and	Rabinowitz,	1982

59

Humans	perceive	the	world	in	3D!



Biederman,	Mezzanotte and	Rabinowitz,	1982
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Humans	perceive	the	world	in	3D!



V1

where	pathway
(dorsal	stream)

what	pathway
(ventral	stream)

61

Humans	perceive	the	world	in	3D!



Representing	the	3D	space



Representing	the	3D	space

Fitzgibbon & Zisserman, 98
Triggs et al., 99
Pollefeys et al., 99
Kutulakos & Seitz, 99

Levoy et al., 00
Hartley & Zisserman, 00
Dellaert et al., 00
Rusinkiewic et al., 02
Nistér,  04
Brown & Lowe, 04

Schindler et al., 04
Lourakis & Argyros, 04
Colombo et al., 05
Savarese et al., IJCV 05
Savarese et al., IJCV 06
Saxena et al., 07-09

Snavely et al., 06-08
Schindler et al., 08
Agarwal et al., 09
Frahm et al., 10
Golparvar-Fard, et al.  JAEI 10
Pandey et al. IFAC , 2010
Pandey et al.  ICRA 2011

Lucas & Kanade, 81
Chen & Medioni, 92
Debevec et al., 96
Levoy & Hanrahan, 96 63
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- 3D	point	clouds	(2D	features	are	associated	to	3D	points)	

3D	points	clouds	are	built	from	SFM	or	SLAM



Representing	the	3D	space
- Retinotopics (each	2D	pixel	is	associated	to	a	depth	value)

- Depth	maps	(from	Stereo,	D-RGB,	etc….	)

From
 X. Ren

et al., C
V

PR 11, U
W

-dataset 



Representing	the	3D	space
- Retinotopics (each	2D	pixel	is	associated	to	a	3D	property)

- Depth	maps	(from	Stereo,	D-RGB,	etc….	)
- Orientation	maps	(from	single	view)

H
oiem

 et al. 05

D	Hoiem,	AA	Efros,	M	Hebert	,	2007



Representing	the	3D	space
- Retinotopics (each	2D	pixel	is	associated	to	a	depth	value)

- Depth	maps	(from	Stereo,	D-RGB,	etc….	)
- Orientation	maps	(from	single	view)

H
oiem

et al. 05

D	Hoiem,	AA	Efros,	M	Hebert	,	2007



Representing	the	3D	space
- Box model



Representing	the	3D	space
- Box model



Representing	the	3D	space
- Box model

• Lee et al. 09,10
• Gupta et al. 10, 11
• Koppula et al. 11
• Guo & Hoiem 12
• Del Pero et al., 12
• Schwing & Urtasun, 12

• Hoiem et al. 06-10
• Saxena et al. 06-09 
• Gould et al. 09
• Hedau et al. 09
• Bao, et al. CVPR 2010
• Choi et al., 2013

H
ed

au
et

 a
l. 

09



Learning	a	box	model	using	CNNs

70

Dasgupta, Chen, Fang, et al. CVPR 2016



Some	results



sofa

chair

desk

Modeling	the	interplay	objects-space

Interactions	between:
- Objects-space
- Object-object

Coughlan	&	Yiulle 00
Hoiem et	al,	06
Stella	et	al.,	08
Herdau et	al.,09
Lee	et	al.,	09
Gupta	et	al,	10
Fouhey et	al,	12
De	Pero et	al.,	12

Wang	et	al.,	13
Schwing et	al.,	13
Zhao	&	Zhu,	13
Eigen	et	al.,	14
Liu	et	al.,	15
Mallya &	Lazebnik,	15
Hane et	al.,	14-15
Zhang	et	al.,	15



73

Ba
o 

et
 a

l.,
 C

V
PR

 2
01

0

Ground	plane-objects
Space:	ground	plane
Objects:	3D	pose	+	scale
Camera:	weak	perspective



Choi et al., 2011

• Monocular cameras 
• Un-calibrated cameras
• Arbitrary motion 

Ground	plane-objects



3D	Geometric	Phrases

75

Choi	et	al,	CVPR	13	,	IJCV	15
Space:	Box	model
Objects:	3D	pose	+	scale
Camera:	Full	perspective
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 1:Chair  2:Chair 

 1:Chair 

 2:Dining Table 

 1:Chair 

 2:Chair 

 3:Chair 

 4:Dining Table 

 1:Bed 

 2:Side Table 

 1:Sofa 

 2:Sofa 

 1:Side Table  2:Side Table 

 1:Sofa 

 2:Table 

Training	Dataset 3DGPs

3D	Geometric	Phrases

• w/o	annotations
• Compact
• View-invariant

Using	Max-Margin	learning
w/	novel	Latent	Completion	
algorithm
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Sofa,	Coffee	Table,	Chair,		Bed,	Dining	Table,	Side	Table

Estimated	Layout 3D	Geometric	Phrases

Scene	understanding	results



Results:	Object	Detection
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• Interaction	between	object-space
• Interaction	among	objects
• Transfer	semantics	across	views

Modeling	relationships	of	objects	across	views
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• Interaction	between	object-space
• Interaction	among	objects
• Transfer	semantics	across	views

Modeling	relationships	of	objects	across	views



•Measurements	I
• Points	(x,y,scale)
• Objects	(x,y,	scale,	pose)
• Regions	(x,y,	pose)

•Model	Parameters:
• Q =		3D	points
• O =	3D	objects
• B =	3D	regions
• C =	cam.	prm.		K,	R,	T

81

Semantic	structure	from	motion



•Measurements	I
• Points	(x,y,scale)
• Objects	(x,y,	scale,	pose)
• Regions	(x,y,	pose)

•Model	Parameters:
• Q =		3D	points
• O =	3D	objects
• B =	3D	regions
• C =	cam.	prm.		K,	R,	T

82

Semantic	structure	from	motion



•Measurements	I
• Points	(x,y,scale)
• Objects	(x,y,	scale,	pose)
• Regions	(x,y,	pose)

•Model	Parameters:
• Q =		3D	points
• O =	3D	objects
• B =	3D	regions
• C =	cam.	prm.		K,	R,	T

YCO Y
CB

Y
CQ

Fa
ct
or
	g
ra
ph

83

Semantic	structure	from	motion



•Measurements	I
• Points	(x,y,scale)
• Objects	(x,y,	scale,	pose)
• Regions	(x,y,	pose)

•Model	Parameters:
• Q =		3D	points
• O =	3D	objects
• B =	3D	regions
• C =	cam.	prm.		K,	R,	T

SSFM:	point-level	compatibility

Y
CQ

84



• Tomasi	&	Kanade ‘92
• Triggs et	al	’99
• Soatto	&	Perona	99
• Hartley		&	Zisserman	00
• Dellaert	et	al.	00

Point	re-projection		error	

•Measurements	I
• Points	(x,y,scale)
• Objects	(x,y,	scale,	pose)
• Regions	(x,y,	pose)

•Model	Parameters:
• Q =		3D	points
• O =	3D	objects
• B =	3D	regions
• C =	cam.	prm.		K,	R,	T

SSFM:	point-level	compatibility

projection

observation

• Pollefeys	&	V.	Gool	02
• Nister 04
• Brown	&	Lowe	07
• Snavely	et	al.	0885



•Measurements	I
• Points	(x,y,scale)
• Objects	(x,y,	scale,	pose)
• Regions	(x,y,	pose)

•Model	Parameters:
• Q =		3D	points
• O =	3D	objects
• B =	3D	regions
• C =	cam.	prm.		K,	R,	T

SSFM:	Object-level	compatibility

YCO

86

Y
CB

Y
CQ



•Measurements	I
• Points	(x,y,scale)
• Objects	(x,y,	scale,	pose)
• Regions	(x,y,	pose)

•Model	Parameters:
• Q =		3D	points
• O =	3D	objects
• B =	3D	regions
• C =	cam.	prm.		K,	R,	T

SSFM:	Object-level	compatibility

YCO

Object	“re-projection”	error

87



Camera	1 Camera	2

• Agreement	with	measurements	is	computed	using	position,	pose	and	scale

SSFM:	Object-level	compatibility

88



Camera	1 Camera	2

• Agreement	with	measurements	is	computed	using	position,	pose	and	scale

SSFM:	Object-level	compatibility

89



SSFM	with	interactions

•Measurements	I
• Points	(x,y,scale)
• Objects	(x,y,	scale,	pose)
• Regions	(x,y,	pose)

•Model	Parameters:
• Q =		3D	points
• O =	3D	objects
• B =	3D	regions
• C =	cam.	prm.		K,	R,	T

Y OB

Y
QB

Y
QO

YCO
Y

CB

Y
CQ

Bao,	Bagra,	Chao,	Savarese	
CVPR	2012

• Interactions	of	points,	regions	and	objects	across	views
• Interactions	among	object-regions-points



SSFM	with	interactions

•Measurements	I
• Points	(x,y,scale)
• Objects	(x,y,	scale,	pose)
• Regions	(x,y,	pose)

•Model	Parameters:
• Q =		3D	points
• O =	3D	objects
• B =	3D	regions
• C =	cam.	prm.		K,	R,	T

Object-Region	Interactions:



SSFM	with	interactions

•Measurements	I
• Points	(x,y,scale)
• Objects	(x,y,	scale,	pose)
• Regions	(x,y,	pose)

•Model	Parameters:
• Q =		3D	points
• O =	3D	objects
• B =	3D	regions
• C =	cam.	prm.		K,	R,	T

Object-Region	Interactions:



SSFM	with	interactions

•Measurements	I
• Points	(x,y,scale)
• Objects	(x,y,	scale,	pose)
• Regions	(x,y,	pose)

•Model	Parameters:
• Q =		3D	points
• O =	3D	objects
• B =	3D	regions
• C =	cam.	prm.		K,	R,	T

Object-point	Interactions:
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SSFM	with	interactions

•Measurements	I
• Points	(x,y,scale)
• Objects	(x,y,	scale,	pose)
• Regions	(x,y,	pose)

•Model	Parameters:
• Q =		3D	points
• O =	3D	objects
• B =	3D	regions
• C =	cam.	prm.		K,	R,	T

Object-point	Interactions:

x
x



Solving	the	SSFM	problem

• Modified	Reversible	Jump	Markov	Chain	Monte	Carlo	(RJ-
MCMC)	sampling	algorithm

• Initialization	of	the	cameras,	objects,	and	points	are	critical	
for	the	sampling

• Initialize	configuration	of	cameras	using:
• SFM
• consistency	of	object/region	properties	across	views

[Dellaert	et	al.,	2000]
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Input	images

• Wide	baseline
• Background	clutter
• Limited	visibility
• Un-calibrated	cameras
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Results

DPM	[1] SSFM	
2	views
no	int.

SSFM
2	views

SSFM	
4	views

54.5% 61.3% 62.8% 66.5%

FORD	CAMPUS	dataset	[Pandey	et	al.,	09]
Office	dataset	[Bao	et	al.,	11]

Average	precision	in	detecting	
objects	in	the	2D	image	

Average	precision	in	localizing	
objects	in	the	3D	space

Hoiem
et	al.	2011

SSFM
no	int.

SSFM

FORD	CAMPUS 21.4% 32.7% 43.1%
OFFICE 15.5% 20.2% 21.6%

101[1]	Felzenszwalb et	al.	2008



Results

FORD	CAMPUS	dataset	[Pandey	et	al.,	09]
Office	dataset	[Bao	et	al.,	11]
Street	dataset		[Bao	et	al.,	11]

Camera	translation	error
SFM
Snavely
et	al.,	08

SSFM
no	int.

SSFM

FORD	CAMPUS 26.5° 19.9° 12.1°

OFFICE	 8.5° 4.7° 4.2°

STREET 27.1° 17.6° 11.4°

Camera	rotation error
SFM
Snavely
et	al.,	08

SSFM
no	int.

SSFM

<1° <1° <1
9.6° 4.2° 3.5°
21.1° 3.1° 3.0°
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Wide-baseline	feature	correspondence

xx
x

x



SSFM

Camera	Pose	Estimation	v.s.	Base	Line	Width

FORD	dataset

Camera	baseline		[m]

(e
T)	
Er
ro
r	(
De

gr
ee
)

SSFM	+	

SSFM

Bundler	[1]

SSFM	Source	code	available!
Please	visit:	http://www.eecs.umich.edu/vision/research.html
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3D	reconstruction	from	images

3D	Scene	Understanding

• The	SFM	problem
• Affine	SFM
• Perspective	SFM
• Bundle	Adjustment

• Motivation
• Single	view	3D	scene	understanding
• Multi-views	3D	scene	understanding	


