Stanford Vision & Learning Lab

3D Scene Understanding

Silvio Savarese

Computer Vision, CoS 429

Princeton University November 21st 2017

Is this about where?

Is this sufficient?

Is this about what?

Image-to-labels paradigm

image

labels

Road

Lombard Street, San Francisco (2)

- The SFM problem
- Affine SFM
- Perspective SFM
- Bundle Adjustment

- Motivation
- Single view 3D scene understanding
- Multi-views 3D scene understanding

- The SFM problem
- Affine SFM
- Perspective SFM
- Bundle Adjustment

- Motivation
- Single view 3D scene understanding
- Multi-views 3D scene understanding

- The SFM problem
- Affine SFM
- Perspective SFM
- Bundle Adjustment

- Motivation
- Single view 3D scene understanding
- Multi-views 3D scene understanding

Structure from motion problem

Courtesy of Oxford Visual Geometry Group

Structure from motion problem

Given *m* images of *n* fixed 3D points

•
$$\mathbf{x}_{ij} = \mathbf{M}_i \mathbf{X}_j$$
, $i = 1, ..., m, j = 1, ..., n$

Pinhole camera

Derived using similar triangles

Projective camera

 $P'_{3\times 1} = M P_{w} = K_{3\times 3} \begin{bmatrix} R & T \end{bmatrix}_{3\times 4} P_{w4\times 1} \qquad M = \begin{bmatrix} \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \mathbf{m}_{3} \end{bmatrix}$

Projective cameras

- Parallel lines are projected as converging lines!
- Distant objects look small!

Structure from motion problem

From the mxn observations \mathbf{x}_{ii} , estimate:

•*m* projection matrices **M**_{*i*}

•*n* 3D points **X**_{*i*}

motion structure

- The SFM problem
- Affine SFM
- Perspective SFM
- Bundle Adjustment

- Motivation
- Single view 3D scene understanding
- Multi-views 3D scene understanding

Orthographic (affine) projection

Distance from center of projection to image plane is infinite

Projection of a cube with affine cameras

Affine cameras

For the affine case (in Euclidean space)

The Affine Structure-from-Motion Problem

Given *m* images of *n* fixed points \mathbf{X}_i we can write

 $\mathbf{X}_{ij} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i$ for i = 1, ..., m and j = 1, ..., n N. of cameras N. of points

Problem: estimate m matrices A_i , m matrices b_i and the n positions X_i from the m×n observations x_{ij} .

How many equations and how many unknown?

2m × n equations in 8m + 3n - 9 unknowns

A factorization method – Tomasi & Kanade algorithm

C. Tomasi and T. Kanade<u>Shape and motion from image streams under orthography: A factorization method.</u> *IJCV*, 9(2):137-154, November 1992.

- Data centering
- Factorization

Centering: subtract the centroid of the image points

$$\begin{bmatrix} \mathsf{Eq. 6} \end{bmatrix} \quad \hat{\mathbf{x}}_{ij} = \mathbf{x}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{ik} \qquad \overline{\mathbf{x}}_{i}$$

Centering: subtract the centroid of the image points

[Eq. 6]
$$\hat{\mathbf{x}}_{ij} = \mathbf{x}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{ik} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i - \frac{1}{n} \sum_{k=1}^{n} \mathbf{A}_i \mathbf{X}_k - \frac{1}{n} \sum_{k=1}^{n} \mathbf{b}_i$$

Centering: subtract the centroid of the image points

$$\begin{bmatrix} \mathsf{Eq. 6} \end{bmatrix} \quad \hat{\mathbf{x}}_{ij} = \mathbf{x}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{ik} = \mathbf{A}_{i} \mathbf{X}_{j} + \mathbf{b}_{i} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{A}_{i} \mathbf{X}_{k} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{b}_{i}$$

$$= \mathbf{A}_{i} \left(\mathbf{X}_{j} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k} \right) = \mathbf{A}_{i} \left(\mathbf{X}_{j} - \overline{\mathbf{X}} \right)$$

$$= \mathbf{A}_{i} \hat{\mathbf{X}}_{j} \quad \begin{bmatrix} \mathsf{Eq. 8} \end{bmatrix}$$

$$= \mathbf{A}_{i} \hat{\mathbf{X}}_{j} \quad \begin{bmatrix} \mathsf{Eq. 8} \end{bmatrix}$$

$$= \overline{\mathbf{X}}_{i} \hat{\mathbf{X}}_{j} \quad \begin{bmatrix} \mathsf{Eq. 8} \end{bmatrix}$$

Thus, after centering, each normalized observed point is related to the 3D point by

$$\hat{\mathbf{X}}_{ij} = \mathbf{A}_i \hat{\mathbf{X}}_j \quad \text{[Eq. 8]}$$

$$\overline{\mathbf{X}} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k} \quad \text{[Eq. 7]}$$

Centroid of 3D points

If the centroid of points in 3D = center of the world reference system

$$\hat{\mathbf{X}}_{ij} = \mathbf{A}_i \hat{\mathbf{X}}_j = \mathbf{A}_i \mathbf{X}_j \quad \text{[Eq. 9]}$$

A factorization method - factorization

Let's create a 2m × n data (measurement) matrix:

Each $\hat{\mathbf{X}}_{ij}$ entry is a 2x1 vector!

A factorization method - factorization

Let's create a $2m \times n$ data (measurement) matrix:

Each $\hat{\mathbf{X}}_{ij}$ entry is a 2x1 vector! \mathbf{A}_{i} is 2x3 and \mathbf{X}_{i} is 3x1

The measurement matrix **D** = **M S** has rank 3 (it's a product of a 2mx3 matrix and 3xn matrix)

• How to factorize D? By computing the Singular value decomposition of D!

Since rank (D)=3, there are only 3 non-zero singular values σ_1 , σ_2 and σ_3

Factorizing the Measurement Matrix

 $D = U_3 W_3 V_3^T = U_3 (W_3 V_3^T) = M S$ [Eq. 12]

Factorizing the Measurement Matrix

$$D = U_3 W_3 V_3^{T} = U_3 (W_3 V_3^{T}) = M S$$
 [Eq. 12]

What is the issue here? **D** has rank>3 because of:

- measurement noise
- affine approximation

Theorem: When **D** has a rank greater than 3, $\mathbf{U}_3\mathbf{W}_3\mathbf{V}_3^T$ is the best possible rank- 3 approximation of **D** in the sense of the Frobenius norm.

Reconstruction results

120

C. Tomasi and T. Kanade. <u>Shape and motion from image streams under orthography:</u> <u>A factorization method.</u> *IJCV*, 9(2):137-154, November 1992.

x

Affine Ambiguity

Affine Ambiguity

• The decomposition is not unique. We get the same **D** by applying the transformations:

$$M^* = M H$$

 $S^* = H^{-1}S$

where **H** is an arbitrary 3x3 matrix describing an affine transformation

• Additional constraints must be enforced to resolve this ambiguity

Affine Ambiguity

Similarity Ambiguity

- The scene is determined by the images only up a similarity transformation (rotation, translation and scaling)
- This is called **metric reconstruction**

- The ambiguity exists even for (intrinsically) calibrated cameras
- For calibrated cameras, the similarity ambiguity is the only ambiguity

[Longuet-Higgins '81]

Similarity Ambiguity

• It is impossible, based on the images alone, to estimate the absolute scale of the scene

Limitations

- Factorization methods assume all points are visible. Untrue when:
 - occlusions occur
 - failure in establishing correspondences
- Affine approximation is often too crude when:
 - objects are close to camera

3D reconstruction from images

- The SFM problem
- Affine SFM
- Perspective SFM
- Bundle Adjustment

3D Scene Understanding

- Motivation
- Single view 3D scene understanding
- Multi-views 3D scene understanding

Structure from motion problem

From the mxn observations \mathbf{x}_{ij} , estimate:

- *m* projection matrices $M_i = motion$
- •*n* 3D points $X_j = structure$

Structure from motion problem

Bundle adjustment

- Non-linear method for refining structure and motion
- Minimizes re-projection error

General Calibration Problem

$$E(\mathbf{M}, \mathbf{X}) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(\mathbf{x}_{ij}, \mathbf{M}_i \mathbf{X}_j)^2$$
parameters
measurements

D is the nonlinear mapping

- Newton Method
- Levenberg-Marquardt Algorithm
 - Iterative, starts from initial solution
 - May be slow if initial solution far from real solution
 - Estimated solution may be function of the initial solution
 - Newton requires the computation of J, H
 - Levenberg-Marquardt doesn't require the computation of H

Bundle adjustment

• Advantages

- Handle large number of views
- Handle missing data

Limitations

- Large minimization problem (parameters grow with number of views)
- Requires good initial condition
- Used as the final step of SFM (i.e., after the factorization or algebraic approach)
- Factorization or algebraic approaches provide a initial solution for optimization problem

3D reconstruction from multiple views

Snavely et al., 06-08

3D reconstruction from multiple views

Snavely et al., 06-08

3D reconstruction from images

- The SFM problem
- Affine SFM
- Perspective SFM
- Bundle Adjustment

3D Scene Understanding

- Motivation
- Single view 3D scene understanding
- Multi-views 3D scene understanding

Lombard Street, San Francisco (2)

Why is this important?

Cherries or watermelon?

Cherries or watermelon?

Humans perceive the world in 3D!

Biederman, Mezzanotte and Rabinowitz, 1982

Humans perceive the world in 3D!

Biederman, Mezzanotte and Rabinowitz, 1982

Humans perceive the world in 3D!

- 3D point clouds (2D features are associated to 3D points)

Courtesy of Oxford Visual Geometry Group

3D points clouds are built from SFM or SLAM

Fitzgibbon & Zisserman, 98 Triggs et al., 99 Pollefeys et al., 99 Kutulakos & Seitz, 99 Lucas & Kanade, 81 Chen & Medioni, 92 Debevec et al., 96 Levoy & Hanrahan, 96 Levoy et al., 00 Hartley & Zisserman, 00 Dellaert et al., 00 Rusinkiewic et al., 02 Nistér, 04 Brown & Lowe, 04

Schindler et al., 04 Lourakis & Argyros, 04 Colombo et al., 05 Savarese et al., IJCV 05 Savarese et al., IJCV 06 Saxena et al., 07-09 Snavely et al., 06-08 Schindler et al., 08 Agarwal et al., 09 Frahm et al., 10 Golparvar-Fard, et al. JAEI 10 Pandey et al. IFAC, 2010 Pandey et al. ICRA 2011

- Retinotopics (each 2D pixel is associated to a depth value)
 - Depth maps (from Stereo, D-RGB, etc....)

- Retinotopics (each 2D pixel is associated to a 3D property)
 - Depth maps (from Stereo, D-RGB, etc....)
 - Orientation maps (from single view)

D Hoiem, AA Efros, M Hebert , 2007

- Retinotopics (each 2D pixel is associated to a depth value)
 - Depth maps (from Stereo, D-RGB, etc....)
 - Orientation maps (from single view)

D Hoiem, AA Efros, M Hebert, 2007

Hoiem et al. 05

- Box model

- Box model

Representing the 3D space Box model

- Hoiem et al. 06-10 Lee et al. 09,10
- Saxena et al. 06-09 Gupta et al. 10, 11
- Gould et al. 09 Koppula et al. 11
- Hedau et al. 09 Guo & Hoiem 12
- Bao, et al. CVPR 2010 Del Pero et al., 12
- Choi et al., 2013
 Schwing & Urtasun, 12

Hedau et al. 09

Learning a box model using CNNs

Dasgupta, Chen, Fang, et al. CVPR 2016

Some results

Modeling the interplay objects-space

Wang et al., 13 Schwing et al., 13 Zhao & Zhu, 13 Eigen et al., 14 Liu et al., 15 Mallya & Lazebnik, 15 Hane et al., 14-15 Zhang et al., 15

Interactions between:

desk

chair

sofa

- Objects-space
- Object-object
Ground plane-objects

Space: ground plane Objects: 3D pose + scale Camera: weak perspective

Ground plane-objects

Choi et al., 2011

- Monocular cameras
- Un-calibrated cameras
- Arbitrary motion

3D Geometric Phrases

Choi et al, CVPR 13, IJCV 15

Space: Box model Objects: 3D pose + scale Camera: Full perspective

3D Geometric Phrases

- w/o annotations
- Compact
- View-invariant

Using Max-Margin learning w/ novel Latent Completion algorithm

Scene understanding results

Sofa, Coffee Table, Chair, Bed, Dining Table, Side Table

Estimated Layout

Results: Object Detection

Average Precision %

Modeling relationships of objects across views

- Interaction between object-space
- Interaction among objects
- Transfer semantics across views

Modeling relationships of objects across views

Interaction between object-space

80

• Interaction among objects

....

• Transfer semantics across views

Semantic structure from motion

Semantic structure from motion

$$\{\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}\} = \arg \max_{\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}} \Psi(\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}; \mathbf{I})$$

Semantic structure from motion

$$\{\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}\} = \arg\max_{\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}} \prod_{s} \Psi_{s}^{CQ} \prod_{t} \Psi_{t}^{CO} \prod_{r} \Psi_{r}^{CB}$$

•Measurements I

- Points (x,y,scale)
- Objects (x,y, scale, pose)
- Regions (x,y, pose)

- Q = 3D points
- O = 3D objects
- B = 3D regions
- C = cam. prm. K, R, T

SSFM: Object-level compatibility

• Agreement with measurements is computed using position, pose and scale

SSFM: Object-level compatibility

• Agreement with measurements is computed using position, pose and scale

Bao, Bagra, Chao, Savarese CVPR 2012

 $\{\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}\} = \arg\max_{\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}} \prod_{s} \Psi_{s}^{CQ} \prod_{t} \Psi_{t}^{CO} \prod_{r} \Psi_{r}^{CB} \prod_{t, s} \Psi_{t, s}^{OQ} \prod_{t, r} \Psi_{t, r}^{OB} \prod_{r, s} \Psi_{r, s}^{BQ}$

- Interactions of points, regions and objects across views
- Interactions among object-regions-points

$$\{\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}\} = \arg\max_{\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}} \prod_{s} \Psi_{s}^{CQ} \prod_{t} \Psi_{t}^{CO} \prod_{r} \Psi_{r}^{CB} \prod_{t,s} \Psi_{t,s}^{OQ} \prod_{t,r} \Psi_{t,r}^{OB} \prod_{r,s} \Psi_{r,s}^{BQ}$$

Object-Region Interactions:

•Measurements I

- Points (x,y,scale)
- Objects (x,y, scale, pose)
- Regions (x,y, pose)

- Q = 3D points
- O = 3D objects
- B = 3D regions
- C = cam. prm. K, R, T

$$\{\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}\} = \arg\max_{\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}} \prod_{s} \Psi_{s}^{CQ} \prod_{t} \Psi_{t}^{CO} \prod_{r} \Psi_{r}^{CB} \prod_{t,s} \Psi_{t,s}^{OQ} \prod_{t,r} \Psi_{t,r}^{OB} \prod_{r,s} \Psi_{r,s}^{BQ}$$

Object-Region Interactions:

•Measurements I

- Points (x,y,scale)
- Objects (x,y, scale, pose)
- Regions (x,y, pose)

- Q = 3D points
- O = 3D objects
- B = 3D regions
- C = cam. prm. K, R, T

$$\{\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}\} = \arg\max_{\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}} \max_{s} \Psi_{s}^{CQ} \prod_{t} \Psi_{t}^{CO} \prod_{r} \Psi_{r}^{CB} \prod_{t, s} \Psi_{t, s}^{OQ} \prod_{t, r} \Psi_{t, r}^{OB} \prod_{r, s} \Psi_{r, s}^{BQ}$$

Object-point Interactions:

•

Measurements I

- Points (x,y,scale)
- Objects (x,y, scale, pose)
- Regions (x,y, pose)

- Q = 3D points
- O = 3D objects
- B = 3D regions
- C = cam. prm. K, R, T

$$\{\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}\} = \arg\max_{\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}} \max_{s} \Psi_{s}^{CQ} \prod_{t} \Psi_{t}^{CO} \prod_{r} \Psi_{r}^{CB} \prod_{t, s} \Psi_{t, s}^{OQ} \prod_{t, r} \Psi_{t, r}^{OB} \prod_{r, s} \Psi_{r, s}^{BQ}$$

Object-point Interactions:

Measurements I

- Points (x,y,scale)
- Objects (x,y, scale, pose)
- Regions (x,y, pose)

- Q = 3D points
- O = 3D objects
- B = 3D regions
- C = cam. prm. K, R, T

Solving the SSFM problem

 $\{\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}\} = \arg \max_{\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}} \Psi(\mathbb{Q}, \mathbb{O}, \mathbb{B}, \mathbf{C}; \mathbf{I})$

- Modified Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) sampling algorithm [Dellaert et al., 2000]
- Initialization of the cameras, objects, and points are critical for the sampling
- Initialize configuration of cameras using:
 - SFM
 - consistency of object/region properties across views

Input images

- Wide baseline
- Background clutter
- Limited visibility
- Un-calibrated cameras

FORD CAMPUS dataset [Pandey et al., 09]

Average precision in localizing objects in the 3D space

	Hoiem et al. 2011	SSFM no int.	SSFM
FORD CAMPUS	21.4%	32.7%	43.1%
OFFICE	15.5%	20.2%	21.6%

Average precision in detecting objects in the 2D image

DPM [1]	SSFM 2 views no int.	SSFM 2 views	SSFM 4 views
54.5%	61.3%	62.8%	66.5%

FORD CAMPUS dataset [Pandey et al., 09][1] Felzenszwalb et al. 2008Office dataset [Bao et al., 11]

	Camera translation error		
	SFM Snavely et al., 08	SSFM no int.	SSFM
FORD CAMPUS	26.5°	19.9°	12.1 °
OFFICE	8.5°	4.7 °	4.2 °
STREET	27.1°	17.6°	11.4 °

Camera rotation error

SFM Snavely et al., 08	SSFM no int.	SSFM
<1°	<1°	<1
9.6°	4.2°	3.5 °
21.1°	3.1°	3.0 °

Wide-baseline feature correspondence

Camera Pose Estimation v.s. Base Line Width

Camera baseline [m]

SSFM Source code available!

Please visit: http://www.eecs.umich.edu/vision/research.html

3D reconstruction from images

- The SFM problem
- Affine SFM
- Perspective SFM
- Bundle Adjustment

3D Scene Understanding

- Motivation
- Single view 3D scene understanding
- Multi-views 3D scene understanding