
– COS 429 Final Report –

Neural Style Transfer Replication Project

Haochen Li Yuyan Zhao
Advisor: Riley Simmons-Edler

1. Introduction

In this project, we will explore the problem of neural style transfer using deep learning. The

neural style transfer problem involves taking a content image C and a style image P and combine

them to produce a new image that has the content of C and the style of P.

There are three major advancements in the area of neural style transfer. In 2015, the paper, A

neural algorithm of artistic style [2], proposes an iterative algorithm for neural style transfer. In

2016, the paper, Perceptual losses for real-time style transfer and super-resolution [3], proposes a

real-time neural style transfer algorithm. However, for this algorithm, we have to train a seperate

neural network for each style. In 2017, the paper, A learned representation for artistic style [1],

proposes a real-time neural style transfer algorithm that can transfer a variety of styles with one

neural network.

Our project is an implementation-heavy project. In this project, we implemented A neural

algorithm of artistic style [2] and Perceptual losses for real-time style transfer and super-resolution

[3] from the scratch. We have also done fairly extensive analysis. We did not have time to study A

learned representation for artistic style [1].

2. Motivation

We will talk about the motivation of neural style transfer and the motivation of our project

separately.



The authors of [2] noted that humans have the ability to create great art through a complex

interplay between content and style of an image. However, there is no good algorithmic way of

doing it. The authors want to develop an interesting algorithmic way of doing so. Furturemore, the

authors hope that their work could help understand how humans create and perceive artistic imagery

in an algorithmic way.

A neural algorithm of artistic style [2] proposes an iterative algorithm to solve the problem

of neural style transfer. The authors of Perceptual losses for real-time style transfer and super-

resolution [3] want to speed up the algorithm.

We want to replicate their algorithms because we want to learn more about deep learning and

we think that implementing published deep learning papers from scratch would be a great way of

doing so. Moreover, we just think that neural style transfer is a really cool problem.

3. Approach

Both papers made use of pretrained VGG net. Neither paper used the fully connected layers.

The first paper(iterative algorithm) uses a pretrained VGG19 net, the second paper(real-time) uses

the pretrained VGG16 net.

3.1. A neural algorithm of artistic style

In this paper, the main insight is that the representations of style and content of an image are

seperable in convolutional neural network. This paper uses a pretrained VGG19 network. They

input three images in the VGG19 network at the same time, a content image C, a style image S, and

an image that is initialized to white noise(or the content image or the style image) I. All three images

are passed through the network at the same time. Let layeri denote a layer in the VGG19 network,

and let layeri(x) denote the output of layer i that takes an input x. For content reconstruction, let Ii

denote the result of running I through VGG19, stopping after the ith layer, let Ci denote the result of

running C through VGG19, stopping after the ith layer. Pick any layer of the VGG19 net, we can

2



use the output of that layer as the content representation. Suppose we picked layer i, we calculate

the content loss by compute the MSELoss between Ii and Ci. For style representation, let Si denote

the result of running S through VGG19, stopping after the ith layer. To represent the style, we

need to use something called the Gram Matrix. The Gram matrix captures the correlation between

different pixels in an image, while ignoring the specific details(content) of the image, thus making

it a good candidate to represent style. Let G denote the Gram matrix(for the definition of Gram

matrix, please refer to [2]), the style representation of style image using the ith layer be G(Si). The

style loss is calculated by computing the MSELoss between G(Ii) and G(Si). In the original paper,

they used sum of style losses from multiple layers of VGG19 as the final style loss. Furthremore,

we specifiy a content weight, CW , and a style weight, SW .

Totalloss =CW ∗ contentloss +SW ∗ styleloss

For each iteration, we try to minimize the total loss function by optimizing the values of I.

3.2. Perceptual losses for real-time style transfer and super-resolution

In this paper, they train a neural network for each style. Here is the network architecture used

in [3](Taken directly from the original paper):

3



Here is the detailed architecture of image transformation network(taken from the supplementary

information of this paper):

In this paper, x, the input image to the image transformation net, is the same as the content

target. They pass ys, ŷ, and yc through VGG16 net and calculate the style and content loss as in [2].

However, in this paper, they are optimizing the parameters of the image transformation net. The

idea is to have the image transformation net output a good ŷ that can minimize the total loss function

in the previous section. For the training set, they used the COCO Dataset [4] as content images and

a single style image. In this approach, they have to train a separate network for every style image.

4. Data Collection

4.1. A neural algorithm of artistic style

For replicating this paper, we don’t need a training set since we are not training any network(we

are essentially training the initialized image). We collected 22 style images and 20 content images

from Google Images, and we will present some of the results in the analysis section. Here are some

examples of the content and style images we collected:

4

http://cocodataset.org/#home


Figure 1: Content Images

Figure 2: Style Images

5



4.2. Perceptual losses for real-time style transfer and super-resolution

For replicating this paper, we need the COCO dataset [4]. We first downloaded the COCO

dataset [4], then we removed all non-RGB images, and resized all images in the dataset to 256 by

256. We used the same set of 22 style images as above.

5. Summary of Implementation

First of all, we would go over things that are common to both papers we replicated. We used the

p2.xlarge instance on AWS. We chose to use p2.xlarge because we want to use GPU and p2.xlarge

is the cheapest option that offers a GPU on AWS. We choose PyTorch as our deep learning frame-

work because is enables us to use Python and it generates computational graph dynamically, making

it easier to debug. In both projects, we need to upload data we collected to AWS EC2 using FileZilla.

After finishing the project, we think that implementing published research papers from scratch

is very tricky as research papers are not written in a way that is very friendly for people who are

relatively new to deep learning to replicate. However, we are able to understand deep learning a lot

better by understanding published research papers enough to implement it. In addition, by doing

this project, we understand PyTorch a lot better.

5.1. A neural algorithm of artistic style

For implementing this algorithm, it takes very little time to upload data to EC2. However,

the implementation of this algorithm took us the longest since we don’t understand the neural

style transfer algorithm and we don’t know PyTorch very well. PyTorch is still a relatively new

framework and the documentation sometimes is not as comprehensive as we would like them to be.

There are two points in the paper that confused us in the beginning. The first one is that if

we are calculating the style and content loss only using a subset of layers in VGG19 net, do we

6



need to pass the images through every layer of the VGG19 Net? After a more detailed reading

of the paper and watching a talk given by the author on Youtube, we decide that we should pass

the images through all layers of VGG19 net. We also tried only passing the images through

a subset of VGG layers(we tried using VGG19 net up to the 8th Convolutional layer), we did

not obtain good results at all(many results resemble neither the content nor the style image). We

are able to obtain results visually similar to the published paper by using all layers of the VGG19 net.

At the beginning, we were also confused regarding how to optimize the initialized image. We

were confused because we have only seen cases where we optimize a set of parameters in some

neural network before. By understanding this, we gained a better understanding of how optimizer

works in deep learning.

The first step in implementation is to get the images into the formats required by PyTorch. We

did so by writing an ImageDataSet class, that turns the images in a certain folder into numpy arrays.

We then used dataloader and torch.vision.transforms class that turn the numpy arrays that represent

images into Tensors, the datatype required by PyTorch framework. We then used Dataloader that

enables us to iterate thorough the set of images we obtained, making it possible to train.

The second step is to implement the process of training(optimizing the initialized image). We

encountered some major challenges in this step.

The first challenge is the implementation of Gram Matrix. We were very sure that our imple-

mentation is right. However, using my implementation, the style loss decreases during the first one

or two iterations, and then the style loss stays at a very high level. The optimizer will optimize the

content loss to 0. As a result, the output is always an image that is almost identical to the content

image and has almost no resemblance to the style of style image. We spent two days trying to debug

and had no progress. We then decided to go online and take the implementation of Gram matrix

7



from this website: Pytorch Tutorial. Here are the lines of code we took:

c l a s s GramMatrix ( nn . Module ) :

d e f f o r w a r d ( s e l f , i n p u t ) :

# a= b a t c h s i z e ( = 1 )

a , b , c , d = i n p u t . s i z e ( )

# b=number o f f e a t u r e maps

# ( c , d )= d i m e n s i o n s o f a f . map (N=c∗d )

f e a t u r e s = i n p u t . view ( a ∗ b , c ∗ d )

# compute t h e gram p r o d u c t

G = t o r c h .mm( f e a t u r e s , f e a t u r e s . t ( ) )

# we ’ n o r m a l i z e ’ t h e v a l u e s o f t h e gram m a t r i x

# by d i v i d i n g by t h e number o f e l e m e n t i n each f e a t u r e maps .

r e t u r n G. d i v ( a ∗ b ∗ c ∗ d )

The input parameter in the forward function of GramMatrix is a Variable(which is just a wrap-

per that contains the tensor). Their implementation kept it as a Variable, but our implementation

pulled the tensor out of the Variable. We tested the Gram Matrix function independent of the rest of

our system. Our implementation and their implementation gave the same numeric results. However,

if we use our implementation in the overall system, the output image is almost identical to content

image(do not optimize style loss). If we use their implementation, we get very good results. We

tried very hard to figure out why this is happening, but we still don’t understand why. We would

really appreciate some likely explanations since this will help us if we were to do any projects

involving deep learning in the future.

8

http://pytorch.org/tutorials/advanced/neural_style_tutorial.html


We then proceed to implement the training algorithm. One tricky thing is that we have to be

aware of in-place operation in PyTorch. If we overwrite some variables that are needed for gradient

computations later via some in-place operations, we would mess up the computational graph. We

had to fix a few bugs that are related to this issue during our implementation.

Another tricky part during this implementation is to make PyTorch use GPU. Pytorch code

uses CPU by default, and Pytorch’s official tutorial for GPU is less than comprehensive. CPU is too

slow for our purpose. We had to spend a while to figure this out by looking at Youtube tutorials and

reading PyTorch Forums. It basically involves moving the input and the network in and out of GPU

at the correct time.

The final quirky part we found about PyTorch is that we had to normalize the pixel values of

our input images to [0,1]. Otherwise, we get white noise or blank images as output.

5.2. Perceptual losses for real-time style transfer and super-resolution

After implementing the first algorithm, this algorithm seems a lot easier to implement since the

two algorithms have a lot of similarities. The new part about this algorithm is that we actually need

to build and train a neural network from the scratch. Building the network is not very challenging

since the paper gives us the exact network architecture they used. The only thing we need to be

careful about is to get the padding right so that we can get the dimensions of output right. However,

training the network from the scratch turns out to be tricky. First of all, it takes about 14 hours to

train the network from the scratch on a p2.xlarge instance on AWS. Furthermore, a good value of

the loss functions does not always guarantee good performance on the test set. We spent about 4

days on the process of hyperparamters tuning and we still don’t think that we have enough time

to do hyperparamter tuning. We could have used a more powerful instance on AWS, but the cost

9



would be pretty high. We also had a bug during our first implementation, but we only found out

after 14 hours of training. From this mistake, we learned the value of incremental training, that is,

to train for a certain number of iterations, then view the output to determine whether our code is

likely to contain a bug instead of relying solely on the value of loss functions.

6. Qualitative Analysis

6.1. A neural algorithm of artistic style

The hyperparameters in this algorithm include content weight, denoted as CW , style wright,

denoted as SW , number of iterations trained, denoted as Ite, layers used to represent content, denoted

as lC, and the layers used to represent style, denoted as lS

Even with the same style and content images, different parameters can lead to very different

outputs. The below images illustrate the impact of the content weight to style weight ratio. As

expected, the smaller the ratio is, the greater emphasis the output places on style; the bigger the

ratio is, the greater emphasis the output places on content.

For all the images below, CW = 1, Ite = 15, lC = = Conv4_2, lS = Conv1_1, Conv1_2, Conv2_1,

Conv2_2

For the following 4 rows of images, the leftmost two images are content image and style image

respectively. The other images are output images generated with different hyperparameters.

Figure 3: Style Weight = 1000, 2000, 5000, 10000(Left to Right)

10



Figure 4: Style Weight = 1000, 2000, 5000, 10000(Left to Right)

Figure 5: Style Weight = 1000, 2000, 5000, 10000(Left to Right)

Figure 6: Style Weight = 1000, 2000, 5000, 10000(Left to Right)

11



Changing the layers with which to represent content or style also has a significant impact on

the output. Here we show some examples.

For the belew images, CW = 1,SW = 1000, Ite = 15, lC = Conv4_2. The leftmost two images are

content and style images respectively. The rightmost two images are output images.

Figure 7: Style layers: Conv1_1, Conv1_2, Conv2_1, Conv2_2(third image from left); Style layers:
Conv1_1, Conv2_1, Conv3_1, Conv4_1, Conv5_1(fourth image from left)

For the below images, CW = 1,SW = 2000, Ite = 15. The leftmost two images are content and

style images respectively. The rightmost two images are output images.

Figure 8: Style layers: Conv1_1, Conv1_2, Conv2_1, Conv2_2, Conv3_1, Conv3_2; Content layer:
Conv2_1(third image from left); Style layers: Conv1_1, Conv2_1, Conv3_1, Conv4_1, Conv5_1; Con-
tent layer: Conv4_1(fourth image from left)

For the below images, CW = 1,SW = 5000, Ite = 15. The leftmost two images are content and

style images respectively. The rightmost two images are output images.

12



Figure 9: Style layers: Conv1_1, Conv1_2, Conv2_1, Conv2_2, Conv3_1, Conv3_2; Content layer:
Conv2_2(third image from left); Style layers: Conv1_1, Conv2_1, Conv3_1, Conv4_1, Conv5_1; Con-
tent layer: Conv4_1(fourth image from left)

For the below images, CW = 1,SW = 1000, Ite = 15. The leftmost two images are content and

style images respectively. The rightmost two images are output images.

Figure 10: Style layers: Conv1_1, Conv1_2, Conv2_1, Conv2_2; Content layer: Conv2_1(third
image from left); Style layers: Conv1_1, Conv2_1, Conv3_1, Conv4_1, Conv5_1; Content layer:
Conv2_1(fourth image from left)

Another interesting issue we found out is that although a bad value (large value) of final total loss

usually indicates a bad output image, the reverse is not true: a good value of final total loss does not

necessarily indicate an artistically satisfying output image. Below is an example.

The parameters are: CW = 1,SW = 5000, Ite = 15. Style layers: Conv1_1, Conv1_2, Conv2_1,

Conv2_2, Conv3_1, Conv3_2. Content layer: Conv2_2.

The final total loss is only 1.5873. However as we can see, the output image has a lot of random

noise.

13



Figure 11: content, style, output

6.2. Perceptual losses for real-time style transfer and super-resolution

During training, this algorithm takes 80000 content images as training set and just one style

image. The algorithm looks at this one style image repeatedly. Therefore, it has a tendency to overfit

to the style image. For the images below, we used the starry night as style image and we set style

weight to be 2000 and content weight to be 1. It is easy to see that the style is being overemphasized

in the output. On page 11, we showed the results from first algorithm in which we set style weight

to be 2000 and content weight to be 1, and the output images do not overemphasize style. For the

neural network below, we trained for 40000 iterations with a batch size 4.

Figure 12: Content, Style, Output Image(left to right)

14



Figure 13: Content, Style, Output Image(left to right)

Figure 14: Content, Style, Output Image(left to right)

15



In the original paper, they trained for 40000 iterations with a batch size of 4. It takes about

14 hours on px2.large on AWS to do so. Since we have limited time and money, we trained for

fewer iterations. We noticed that the loss function converges at aroung 10000 iterations. We will

also show results from a model trained on the same style image for 10000, 11000, 12000, 13000

iterations with batch size of 4. The leftmost two images are content and style images respectively.

The other images are the output images.

Figure 15: The output images are from models trained for 10000, 11000, 12000, 13000 iterations
respectively(left to right)

From the above example, we saw that training for additional iterations do not lead to significant

difference in output. Therefore, for future examples, we use models that are trained for 10000

iterations with a batch size of 4 in order to save time and money. We also used a style weight of

1000 and content weight of 1 in order to avoid overemphasizing style in the output. We trained one

network for each unique style image displayed below. We used relu2_2 in VGG16 net to compute

our content loss and we used relu1_2, relu2_2, relu3_3, and relu4_3 to calculate style loss(as in the

original paper). We will now show some examples.

16



Figure 16: Content, Style, Output(left to right)

Figure 17: Content, Style, Output(left to right)

Figure 18: Content, Style, Output(left to right)

17



Figure 19: Content, Style, Output(left to right)

Figure 20: Content, Style, Output(left to right)

Figure 21: Content, Style, Output(left to right)

18



Figure 22: Content, Style, Output(left to right)

Figure 23: Content, Style, Output(left to right)

Figure 24: Content, Style, Output(left to right)

19



As you can see from the above examples, a single trained neural network tends to give output

images that look very similar stylistically. If you want to make an adjustment, you have to retrain a

network from the scratch, and this is a quite inconvenient feature.

6.3. Comparison between the Two Algorithms

Hyperparameter tuning for the real-time transfer algorithm is much harder than the iterative

version because it takes a very long time to train the neural network from scratch, thus taking a

very long time to try different sets of hyperparameters. If you want to transfer a few styles to many

content images, the real-time transfer algorithm will be a better choice. However, if you want to

transfer a variety of styles on a few content images, you should choose the iterative algorithm( 3-5

minutes) since the time required to train the neural network in the real-time algorithm is very

long(14 hours using p2.xlarge on aws).

7. Quantatitive Analysis

7.1. A neural algorithm of artistic style

One interesting aspect of this algorithm is the usage of pooling layers in VGG19 net. If we use

maxpooling, which is the pooling layer used in VGG19 net, the loss function converges aroung 100

iterations. If we replace maxpooling with average pooling(suggested in the original paper) however,

the algorithm will converge in around 15-30 iterations.

For all our results, we used average pooling because of the faster training time(time is very

valuable as analysis with different hyparameters takes a lot of time). For the version with average

pooling, it is risky to train for too many iterations since the loss function might diverge. Here is an

example in which we trained for 50 iterations.

20



Figure 25: content,style,output

Figure 26: Loss Function

21



As you can see, the loss function never converges to an optimal value. Instead, it stays at a very

high level, leading to a very bad result. The x-axis does not mean that we ran for more than 500

iterations. The LBFGS optimizer we used in our implementation does many rounds of optimization

for every step it takes. Although this optimizer gives very good result, it does not seem to be very

stable.

7.2. Comparison between the Two Algorithms

We surveyed 20 classmates. We gave each of them 8 images that are output from algorithm 1

and 8 images that are output from algorithm 2. For each of the following two rows of images, we

applied the style of the leftmost image to the other 4 images on the same row. In this way, algorithm

1 and algorithm 2 will generate 8 images respectively.

Figure 27: one style and four content images

Figure 28: one style and four content images

22



Here are the 8 output images generated by algorithm 1:

Here are the 8 output images generated by algorithm 2:

23



We conducted the survey in the following way: We put the output images generated from the

same pair of content image and style image by algorithm 1 and 2 side by side on a piece of paper

and present it to the user. We present 4 pieces of paper to a single user in total(with two images

on each piece of paper). We ask the use to pick which image they like better. We randomize the

placement of the images(sometimes we place images from algorithm 1 on the left, sometimes we

place images from algorithm 1 on the right). Each one of the 20 users voted 4 times, giving us a

total of 80 votes. Overall, The images from algorithm 1 get a total of 59 votes, and images from

algorithm 2 get a total of 21 votes. Although in our case, most users prefer the images generated

from algorithm 1, we should take this result with a grain of salt. We did not have enough time to

find the most optimal parameters for algorithm 2, due to the long time required for training. Given

enough time and computational resources, we think we should be able to find hyperparameters that

will enable algorithm 2 to generate images at least similar in quality to algorithm 1. For example,

between the two images below, the output image from algorithm 2 actually got 13 votes and the

output from algoritm 1 only got 7 votes.

Figure 29: Algorithm 1(left), Algoritm 2(right)

24



8. Future Work

We would like to explore the algorithm that can do style transfer for a variety of styles with a

single neural network in the future and see whether we can improve on that algorithm.

9. Information Regarding Code

The file "Neural Style Transfer.ipynb" is the implementation of algorithm 1(the iterative

algorithm). The file "Real Time Neural Style Transfer.ipynb" is the implementation of algorithm

2(the real-time algorithm). In case you have trouble opening Ipython notebook files, we also included

"Neural Style Transfer.py" and "Real Time Neural Style Transfer.py". We ran our algorithm on

the Deep Learning AMI (Ubuntu) on AWS. We used the EC2 p2.xlarge instance. For detailed

instruction regarding how to run our code, please contact us directly(It mainly involves opening up

the correct AWS instance, and upload files to EC2, and get the file path correct). We did not include

the detailed instruction here since both Professor Russakovsky and Riley told us that it is not very

necessary to do so as it is unlikely that there is a need to rerun our code.

10. Honor Code Pledge

I pledge my honor that this project represents my own work in accordance with University

regulations.

Signature: Haochen Li, Yuyan Zhao

References
[1] V. Dumoulin, J. Shlens, and M. Kudlur, “A learned representation for artistic style,” ICLR, 2017. [Online].

Available: https://arxiv.org/abs/1610.07629
[2] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style,” CoRR, vol. abs/1508.06576, 2015.

[Online]. Available: http://arxiv.org/abs/1508.06576
[3] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in

European Conference on Computer Vision, 2016.
[4] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and

P. Dollár, “Microsoft COCO: Common Objects in Context,” Computer Vision–ECCV 2014. Springer (2014).

25

https://arxiv.org/abs/1610.07629
http://arxiv.org/abs/1508.06576

	Introduction
	Motivation
	Approach
	A neural algorithm of artistic style
	Perceptual losses for real-time style transfer and super-resolution

	Data Collection
	A neural algorithm of artistic style
	Perceptual losses for real-time style transfer and super-resolution

	Summary of Implementation
	A neural algorithm of artistic style
	Perceptual losses for real-time style transfer and super-resolution

	Qualitative Analysis
	A neural algorithm of artistic style
	Perceptual losses for real-time style transfer and super-resolution
	Comparison between the Two Algorithms

	Quantatitive Analysis
	A neural algorithm of artistic style
	Comparison between the Two Algorithms

	Future Work
	Information Regarding Code
	Honor Code Pledge

