
Flyover: Aerial Mapping from Drone Footage

Alex Yue
acyue@princeton.edu

Victor Zhou
vzhou@princeton.edu

Bharath Srivatsan
bharaths@princeton.edu

ABSTRACT
Drones have become ubiquitous in both public and pri-
vate contexts. Used for everything from pleasure flights
to military reconnaissance, these aerial vehicles have the
potential to fundamentally transform many industries.

In this paper, we introduce Flyover, a state of the
art aerial mapping technology. Flyover is able to gen-
erate detailed overhead maps from post-flight footage
produced by widely available drone hardware, without
the need for any GPS or EXIF flight path data. Ex-
isting commercial solutions are either unable to gener-
ate these flyover maps without expensive supplementary
data or simply generate low-quality outputs. A quanti-
tative evaluation comparing Flyover to the only com-
mercially available, post-flight, footage-based system,
MapsMadeEasy, showed that our system was widely fa-
vored among a surveyed audience of 20 classmates, scor-
ing 3.4 on a scale of 1-4 (versus MapsMadeEasy at 1.2).

Furthermore, we show that the aerial maps generated
from dynamic drone footage is of a sufficient quality
to be used in many post-processing applications. We
demonstrate the viability of one such application by
building a deep-learning based classifier to identify cars
in our output maps. It achieves precision and recall
accuracy of 0.70 and 0.94, respectively.

1. PROJECT DESCRIPTION
The prevalence of affordable, unbox-and-fly drones

has led to an explosion of drone-based video footage.
In industrial and commercial settings, this has brought
about a host of startups aiming to use (often propri-
etary) drones to create high accuracy spatial mappings

This paper is a written report on a final project submitted for the Fall 2017
offering of COS 429 at Princeton University. It was written in accordance
with University Regulations.
Signed: Alex Yue, Victor Zhou, and Bharath Srivatsan
Copyright 2018 .

and metric calculations. These services can involve ex-
traordinarily high sticker costs. For commercial jobs like
site mapping and surveying, clients often opt for high-
end, purposed vehicles that can cost tens of thousands
of dollars. For civil jobs like urban zoning and traffic
engineering, municipalities can pay similar amounts to
acquire critical data.

We set out in this final project to investigate whether
the amateur videos generated by off-the-shelf drones can
be used to create large scale stitched maps. To this
end, we hope to use two immensely popular drones, the
DJI Spark and Phantom 3,1 to create state of the art
overhead maps. Software to build high-resolution maps
from cheaply available drones would be useful not just
for surveying and mapping projects, but also, more cru-
cially, in post-disaster scenarios to estimate damage and
identify key points quickly.

Finally, we use the maps generated by this footage to
build and test a car classifier. Such an application would
be relevant for municipalities and other civic organiza-
tions looking to conduct traffic engineering or perform
occupancy analyses.

2. PREVIOUS WORK
There exist a variety of competitors to our work on

this project in both the research and commercial sectors.
However, none of the other solutions to this problem
produce high-quality aerial stitching outputs from only
post-flight flyover footage.

Some drone mapping packages, including 3DR Site
Scan and WebODM, require hands-on pre-flight involve-
ment. They require either direct drone control via their
apps, or a large amount of post-flight data to help iden-
tify movements and absolute positioning. These images,
furthermore, can still be susceptible to warping and are
often identifiably stitched.

The main software vendor that offers a truly com-
petitive feature set is MapsMadeEasy. MapsMadeEasy
advertises online tools that can assist users in utilizing
their drones to generate aerial images. While it ap-
pears to be similar in functionality and form to Flyover,

Figure 1: Sample map output from 3DR Site Scan, with
evident warping and stitching present

Figure 2: Sample map output from MapsMadeEasy,
demonstrating terrible stitching presence, jagged edges,
and warped buildings.

MapsMadeEasy requires users to upload either a flight
path or to generate one using their online interface in
order for their technology to work optimally. This soft-
ware package does not support post-flight, dynamically
shot flight footage very well without this supplemen-
tary flight data (see Figure 2 above). Other software
solutions such as Pix4D offer similar offline functional-
ity, but are incredibly expensive (with software licenses
costing upwards of $8,7002) and are typically designed
to be used with flight path data.

We leaned on a variety of techniques learned in class
for this project as well. We dynamically subsampled
videos using a difference of Laplacians approach for de-
tecting blurriness. We used the SIFT algorithm to iden-
tify points of interest and RANSAC to match them

across frames. A lot of the content we learned near
the beginning of the semester (about creating panorama
footage, etc.) came into use for stitching. Finally, our
neural network-based approach to building a car clas-
sifier relied on techniques described at the end of the
course.

3. APPROACH & EXPERIMENTS
The Flyover stitching software is comprised of many

different modules that work in conjunction to create the
final aerial image. The main steps involved in gener-
ating these images are: dataset collection, frame sub-
sampling, and image stitching. The approach to each
individual part of this final project is covered in the fol-
lowing subsections. Finally, we describe the system de-
sign and implementation of our car identification deep-
learning classifier.

3.1 Dataset Collection
The dataset that was utilized for image stitching con-

sisted solely of drone footage captured by DJI drones
owned by members of this team. Specifically, these were
the DJI Phantom 3 and the DJI Spark, both of which
retail for under $600.3 These drones were flown un-
der various weather and temperature conditions in or-
der to gather a wide sample of possible landscapes for
our aerial stitching software.

Our team took several precautions in order to ensure
that the captured drone footage was of sufficient qual-
ity to be processed by our other modules. Particularly,
we focused on capturing purely translational footage, ie.
with no rotation or changes in height during video cap-
ture. Initially, we were concerned that our drones would
not be able to fly in a pattern that could guarantee ver-
tical and rotational stability; failure in this regard would
increase the complexity required of our movement model
as it would grow to include an affine transform model
to support rotation, translation, and scaling. However,
we were able to configure settings within the DJI app
itself in order to minimize vertical altitude changes and
prevent rotations. This included changing the IMU (in-
ertial measurement unit) and gimbal pitch speed, and
helped us prevent significant warping issues with the
capture data. This also demonstrates that beginners,
with a brief tutorial on changing these settings in the
app, can capture adequate footage for our software.

These two drones were flown by amateur human op-
erators (members of the group), and captured footage
with the camera field of view directly parallel with the
ground, at altitudes varying from 70 feet to over 400
feet. This was done to ensure that we had plenty of
data to work with. We also captured footage with the
camera field of view perpendicular to the ground in or-
der to generate aerial imagery of the sides of buildings.

Figure 3: Sample Aerial Frame

We flew our drone in various locations around the
municipality of Princeton to capture a complete set of
testing data to use with our system. Our dataset con-
sisted of numerous flight patterns like Hilbert curves,
linear paths, and overlapping paths. The final footage
was stored in either .MP4 or .MOV format.

3.2 Frame Subsampling
Before we stitched our drone footage, we used a num-

ber of methods to subsample the video’s frames intelli-
gently. We aimed to reduce redundant calculations and
speed up the overall stitching process; typically, each
input video consisted of thousands of high definition
frames (1980x1200 resolution), which posed a significant
processing challenge for conventional computers.

Drone footage sometimes contains imperfections - for
example, the camera occasionally attempted to refocus
on a new target or adjusted the ISO sensitivity auto-
matically in changing light conditions. This resulted in
moments where the footage is either blurry because the
ground is not in focus or where there are changes in the
color temperature of the same surface over time. One
filter that we applied on all frames was a blur detection
filter used to remove frames that weren’t sharp enough
and that would degrade our final output.

The blur detection filter is based on the variance of
Laplacians convolved with each individual frame. We
chose this algorithm based on the research presented by
J. Pech-Pacheco and G. Cristobal in ”Diatom Autofo-
cusing in Brightfield Microscopy: a Comparative Study”.4

As we learned in class, the Laplacian can be used for
both edge and blob detection.5 Essentially, the Lapla-
cian is able to measure the change in intensity of each
edge - blurry photos are less likely to result in large
changes in intensity because they contain less distinct
edges. Thus, the variance of the Laplacian for a blurry
photo would also be smaller than that of a crisp photo
allowing us to easily filter out frames by setting a min-
imum threshold variance. Taking the variance of the

Laplacian, then, enabled us to control our tolerance for
blurry photos with a single threshold and was fast to
compute for each given frame.

(a) In Focus Frame

(b) Blurry Frame

We also filtered out adjacent frames that resulted in
minimal displacement from one another by calculating
the L2-norm offset distance between the two. This was
done through a combination of the SIFT algorithm (used
to identify keypoints in each frame) and a brute force
matcher based on the L2-norm provided by OpenCV (to
match keypoints across frames). This is somewhat com-
putationally expensive; however, with a limited number
of keypoints and prior filtering, we were able to restrict
runtime to a reasonable length. If the L2-norm offset be-
tween two adjacent images fell below a given threshold,
the latter image was discarded from the frame subsam-
ple. This, in turn, saved a lot of unnecessary compu-
tation later on, as a lot of frames involved small move-
ments (less than 2 pixels in Euclidean distance) due to
the high frames per second (FPS) capture rate.

Other filters that were implemented but removed from
our final code included a similarity metric that com-
pared the mean structural similarity index between two
frames. This essentially measured the difference in im-
age quality between two similar images. However, we
chose not to use this measure as it was difficult to have
a baseline to compare each frame to.

3.3 Image Stitching
Rendering a complete aerial image from a flyover re-

quires stitching together hundreds of individual frames
from a trimmed set of images. From the subset of im-
ages that remain, we ran the SIFT (Scale Invariant Fea-
ture Transform) algorithm on each frame to obtain a set
of keypoints. Then, we tried to use numerous models
including linear models in order to compute the pixel
offset between two frames. We discovered that the best
approach was to use brute force matching in order to de-
termine invariant keypoints across frames. Finally, we
used RANSAC to obtain the estimated relative offset
between two adjacent frames.

Once the relative offsets between two adjacent frames
was computed, we needed to join these frames together.
To do this, we tried a variety of techniques - our initial
approach involved joining adjacent images iteratively,
immediately after relative offsets were calculated. This,
though, caused issues in stitching footage from more
complex, partially overlapping flight paths like U and
P shapes. When partial overlapping occurred in non-
adjacent frames, marginal rounding errors in relative
offsets sometimes added up to ensure that these later
frames would be skewed or displaced, causing jarring
lines and repeated features.

We ultimately settled on a technique called compos-
ite image generation to preserve perspective through the
entire aerial view. We implemented this by computing
the relative offset of each new frame and only updat-
ing the edges of the proposed composite image itera-
tively. Only at the conclusion of the offset calculations
do we convert relative positions to absolute positions
for stitching. This ensured that only the most recent
frame data for each pixel is shown in the final compos-
ite image, thereby preserving perspective without caus-
ing distortion or warping. In Figure 12, this technique
is demonstrated: newer frames are rendered on top of
older frames, ensuring that the image perspective of ob-
ject flyovers remains constant (especially for tall objects
like trees and buildings).

This technique was not the only one we tried; how-
ever, it outperformed techniques like image blending
and min-cut stitching by far. This was because com-
posite frame rendering handled changes in perspective
with ease. Other techniques for image stitching failed
to account for the relatively low altitude that drones fly
at versus satellite imagery.

3.4 Extension: Car Detection
To perform car detection on our stitched compos-

ite images, we used the Cars Overhead With Context6

(COWC) dataset made publicly available by members
of the Computer Vision group at Lawrence Livermore
National Laboratory. The dataset consists of 256 x 256

Figure 5: Image Stitching of Two Frames

patches of aerial (usually satellite) images taken in var-
ious cities around the world resized to 15 cm per pixel
so that a standard car would fit within a 48 x 48 pixel
bounding box. Each patch was tagged as either car or
neg based on whether or not the central 48 x 48 patch
of pixels contained a car - the remaining image data
surrounding the central patch was meant to be used as
context to improve car classification. The cars featured
in these central 48 x 48 patches were of many orienta-
tions, colors, and models.

Using Keras with a Tensorflow backend, we built and
trained several deep convolutional neural networks to
perform binary classification (car versus neg) on an aerial
image patch. The network architectures we experimented
with were based on our past experience but also drew
inspiration from the well-known AlexNet and VGG-16
networks. Our networks used convolutional layers, max-
pooling layers, fully-connected layers, and dropout lay-
ers. We chose to use dropout layers to prevent overfit-
ting to the training dataset, which was especially impor-
tant to avoid given how characteristically similar (light-
ing, altitude, perspective, contrast, etc) the training
patches were to each other. We trained our networks
using various subsets of the COWC data, including:

• the Columbus Surrogate Unmanned Aerial Vehi-
cle data from the United States Air Force Research
Lab, which contained black-and-white samples only

• the International Society for Photogrammetry and
Remote Sensing data from Potsdam, Germany and
Toronto, Canada

• the Land Information New Zealand data taken in
the city of Selwyn

After training a car classifier, we used a fixed size slid-
ing window mechanism with non-maximum suppression
to apply it to a test stitched composite image to detect
cars.

3.4.1 Version 1

The first iteration (Version 1) of our neural network
architecture had 3 convolutional layers mixed with 2
max-pooling layers, 3 fully-connected layers, and 2 dropout
layers. Each successive convolutional layer used increas-
ingly higher numbers of filters but increasingly smaller
kernel sizes. The final layer of the network had 2 neu-
rons with softmax activation. The network took in an
input of size 48 x 48 pixels with 3 color channels and out-
put a vector of length 2 representing the probabilities of
the input being a car and not being a car, respectively.

Version 1 of our car classifier

Unsurprisingly, Version 1 trained on the black-and-
white dataset performed relatively poorly when tested
on grayscale versions of our stitched composite images,
so we quickly discarded that dataset and focused only on
datasets with color images. After quickly (< 2 hours per
training) experimenting with a few different color data
subsets, we quickly found that Version 1 seemed to be
especially prone to false negatives. This was most likely

due to a major discrepancy between our test images
and the training images we used: whereas the COWC
image patches were all taken from satellites or UAVs
from extremely high altitudes and cropped to low res-
olutions, our test images were taken from off-the-shelf
drones from heights of no more than a few hundred feet.
The difference in altitude especially contributed to a no-
ticeable perspective difference of the cars in our stitched
images versus the cars in the training images.

3.4.2 Version 2

Version 2 of our car classifier

To try to reduce false negatives, we set aside Version 1
and tried a different approach (see Figure 18). Version 2
exclusively used 3 x 3 filters in convolutional layers but
stacked 2 convolutional layers before each max-pooling
layer to increase the true reach of each input pixel - two

successive 3 x 3 filters has the effective range of a 5 x 5
filter. In addition, we changed the output layer from 2
neurons with softmax activation to be a single neuron
with a sigmoid activation.

When trained on the same color datasets we used in
Version 1, Version 2 generally had a lower false nega-
tive rate on our test images. Although the false posi-
tive rate was still significant, Version 2 seemed to have
better performance across the board when compared to
Version 1.

4. DOCUMENTATION

4.1 Code Modules
This project is broken up into two main sections: the

stitcher and the classifier. For each, we provide a brief
explanation of the individual files that comprise the
codebase and their functionality.

4.1.1 Stitcher Module
The stitcher module is comprised of these main files:

• stitcher.py - The core logic used to generate key-
points through SIFT, generate matches between
keypoints in two adjacent frames, and compute the
frame offset using RANSAC.

• frame_manager.py - Business logic for parsing and
converting the input drone footage into a format
used by this module.

• image_model.py - Responsible for storing the final
stitched image and for maintaining the relative off-
sets of each frame from the initial one.

• main.py - Launcher script to run the stitcher.

• point_manager.py - Keeps track of all keypoints
on a global level across frames to ensure that small
errors in the offset calculations don’t result in align-
ment issues for overlapping sections in the final
stitched image.

4.1.2 Classifier Module
The classifier module is comprised of these main files:

• train.py - Launcher script to run the TensorFlow
training session to generate the H5 model file.

• model.py - Makeup composition of the Convolu-
tional Neural Network used to build the model.

• detect_cars.py - Detector that applies classifier
using a sliding window and non-maximum suppres-
sion to render the final image.

4.2 Dependencies
This project could not have been completed without

the work of numerous contributors who have provided a
vast amount of modules available through the pip (Pip
Installs Packages) package management system. Pack-
ages that were used in this final project include:

• OpenCV

• Numpy

• scikit-image

• TensorFlow

• Keras

5. RESULTS
Below, we’ve included a variety of stitched maps gen-

erated by Flyover.

Figure 8: Streicker Bridge: Demonstrates performance
on varying terrain styles and unconventional flightpaths

Figure 9: Icahn Labs: Demonstrates vertical footage
stitching capability

Figure 10: Prospect Avenue North side buildings:
Demonstrates resilience to in-flight drone speed changes

Figure 11: Roberts Stadium: Demonstrates stitching
capabilities at high altitude (>130m)

Figure 12: Prospect Avenue: Demonstrates resilience at
low altitudes to tall trees and buildings causing potential
perspective warping

Figure 13: Poe Field: Demonstrates performance on
overlapping flyovers of same ground and for surveying
applications

Figure 14: An example of our car classifier using Version
2 of our net. This generated 0 false negatives and 1 false
positive

Figure 15: Another car detection example with slightly
poorer performance: 1 false negative, 6 false positives

6. EVALUATION
We evaluated our project in three stages. First, we

qualitatively evaluated the performance of our code.
Then, we quantitatively evaluated these results by sur-
veying classmates about their preferences for these maps.
Finally, we quantitatively evaluated our extension project
by generating precision and recall figures for our cars
classifier.

6.1 Qualitative Evaluation
We felt, subjectively, that our system was easy to use -

a parameter defined at the top of the main python script
set the video location, so stitching a new video required
only one change and one call to this method. Run-
time could be further optimized - stitching a 500-800
frame video took between 20-40 minutes - but still eas-
ily outperformed our benchmark MapsMadeEasy, which
required an hour for even a 45-frame sequence. In par-
ticular, stitching speed was slowed down for grassy shots
that could generate many more keypoints due to tiny fo-
liage inflections.

We then evaluated our maps qualitatively. Each of the
maps was high-definition; the stitching process didn’t
affect the sharpness or image quality of the footage. We
found that the stitching also, correctly, output a super-
set of all frames shot - no areas shot were ignored or
absent from the resulting maps. Finally, we noted that
the quality of maps generated was invariant to lighting
conditions (as stitching was successful in bright light,
low light, and at sunset) and terrain styles.

We then examined the performance of our stitching
output across the variables we played with in creat-
ing our dataset. Our generated maps were successful
across a variety of speeds - the video for Figure 10 alone
was shot at a range of speeds between 5 and 20 mph.
Figures 8 and 13 demonstrate the success of our tech-
nique for a range of flight paths. 8 involved an unusual
boundary path, while 13 incorporated repeated flyovers
of the same ground. Figure 9 demonstrated our suc-
cess in a different shooting orientation (eye-level versus
birds-eye). Finally, figures 14, 10, and 11 represented
progressively higher shooting altitudes, with only min-
imal performance degradation and image warping even
in the tough wind conditions over 130m.

Finally, we assessed performance in the presence of
various complicating factors. First, we noted that the
image perspective issues we had expected for tall objects
like buildings or trees (namely, that the maps would
unnaturally display multiple perspectives on the same
artifacts) were largely resolved by our relative-offset ap-
proach. Because we stitched together our composite
image only once, at the end, more recent images could
supersede older ones, meaning that only one flight per-
spective was rendered. We then noted that object move-

ment (ie. cars and pedestrians) also didn’t largely af-
fect our stitched output. This was because the frame
sampling approach we used dynamically selected par-
tially overlapping frames - by ignoring frames too close
to one another, we reduced the probability of captur-
ing the same moving object multiple times in small off-
sets. Finally, we noted that performance in cases of ra-
dial movement was still imperfect. In the high-altitude
shots of figure 11, harsh winds caused the drone to ro-
tate slightly. This caused slight warping of lines in the
bottom right quadrant of the image.

6.2 Quantitative Evaluation: Flyover
Since there doesn’t exist a ’true’ baseline for us to al-

gorithmically compare our stitching output to (satellite
maps would be occluded in different ways and contain
different features), we aimed to compare our maps to
those generated by the only competitor: MapsMadeEasy.
To do so, we built a series of maps by running Flyover
and MapsMadeEasy on an overlapping set of videos.
Then, we presented these compiled maps in random,
shuffled order to 20 classmates. Each survey respondent
was asked to rank each of the images from 1 (poor) to
4 (excellent), without knowing which map belonged to
which class.

Figure 16: A stitching sample output from Maps-
MadeEasy. One respondent, Samhita Karnati 1́8, called
this rendering ”a joke.”

Figure 17: For comparison, the output of Flyover on the
same footage as above

Ultimately, we found that the Flyover-generated maps
vastly outperformed those made by MapsMadeEasy.

• Flyover maps had an average rating of 3.4

• MapsMadeEasy had an average rating of 1.2

This resounding difference left us confident of the suc-
cess of our algorithm. Given that we had generated a
mapping system that could handily outperform the only
commercial competitor in the space, we concluded that
we were achieving high-quality results.

6.3 Quantitative Evaluation: Car Classifier
To evaluate our car classifier module, we calculated

precision and recall figures for the number of cars iden-
tified. This allowed us to get a sense for the efficacy of
our system.

• Our classifier had average precision of 0.70

• Our classifier had average recall of 0.94

Obviously, in an ideal world, these figures would each
approach 1.0. However, given the dataset constraints we
faced (explained below) and the limitations of our com-
puting resources, we found that this was acceptable per-
formance. Our recall figures were especially high, rep-
resenting our success at minimizing incidences of false
negative reports - almost every car in the maps was iden-
tified. Precision was markedly lower, in part because of
misidentified walls and roofs in low-light renderings.

7. DISCUSSION
We found that Flyover performed surprisingly well

across a wide variety of videos in all sorts of lighting,
weather, and wind conditions. We discuss some salient
characteristics below:

7.1 Strengths
Our algorithms performed optimally, as expected, in

well-lit settings that included various unique, identifi-
able objects. Our flyover of Prospect and Olden Av-
enues, for example, worked well for this reason - that
footage contained cars, trees, and buildings that re-
solved to easily distinguishable keypoints for stitching.
In low-light conditions, Flyover was effective at stitching
together maps, but the movement of long shadows and
rapidly changing light conditions sometimes resulted in
stitching evidence in the output. Flyover was also quite
effective across a variety of altitudes but performed best
in the middle-range of flight heights (40-60m). Speed
didn’t affect stitching accuracy, as our dynamic frame
subsampling approach took care of disproportionately
slow or fast flyovers. More broadly, we saw that our sys-
tem would be particularly useful in high-definition sur-
veying and monitoring applications for which repeated

flyovers of busy (feature-rich) areas at medium-to-low
altitudes are required.

A variety of post-processing applications are also pos-
sible as the maps generated by Flyover were of a suf-
ficiently high quality. Our car classifier performed well
across many of the images used as input. In particular,
it was strong at identifying colorful cars at any orienta-
tion against a traditional asphalt background.

7.2 Weaknesses

7.2.1 Image Stitching
Flyover still has room for improvement, though. The

software responds poorly to height and rotational vari-
ance, both of which often occur at high altitudes when
wind speeds can rise and fall dramatically. This is be-
cause our relative offset approach anticipates transla-
tional movement, so rotations and altitude changes can
result in incorrect keypoint offsets and misplaced frame
positions. As such, maps stitched from high-altitude
drone footage (ie. above 100 meters) can end up being
slightly warped.

7.2.2 Car Detection
The main weaknesses of our car detection models were

false positive rates and performance. While later it-
erations on our model were able to produce low false
negative rates, they had a tendency to mistake lots of
features that weren’t cars for cars. In addition, our de-
tection pipeline currently is not even close to being able
to run in real-time. Although a real-time detection sys-
tem was never one of our goals and is arguably overkill
for our applications, there is still much to be done to
improve the performance of our detector.

7.3 Key Contributions
Most existing drone mapping software is very expen-

sive and cannot be used post-flight. Those that do allow
for post-flight map stitching often require in-depth flight
path metadata submitted via GPS coordinates or EXIF
files (which may be difficult to obtain).

Flyover works off-the-shelf, post-flight, is cheap, and
only needs flight footage. It outperforms the only com-
petitor with a similar offering, MapsMadeEasy, by a sig-
nificant margin, and so represents the state of the art
in this space. Finally, our car classifier module demon-
strates the viability of satellite image-trained neural net
models for identifying and classifying features from (rel-
atively low-altitude) drone videos.

7.4 Next Steps

7.4.1 Image Stitching
Flyover is a great baseline platform for generating

aerial flyover images. One key innovation that we would
like to focus on in the future would be to support affine
transform motion models that would allow for the drone
to have slight imperfections in its flight path (like vari-
ations in height and orientation). This would make
our system more robust for stitching images in the real
world. An affine transform motion model would allow
us to account for scale, translation, and rotation versus
just the linear translation model implemented currently
in our system.

Furthermore, we would also like to integrate more im-
age post-processing capabilities into our system. Over
time, as each drone captures video, the camera varies
its exposure and ISO settings to record the best image
possible. However, when stitching, this will sometimes
lead to small color discrepancies over long flight paths.
We would like to develop and implement algorithms in
our code to self-correct these discrepancies, thereby gen-
erating more seamless renderings.

7.4.2 Car Detection
The main weaknesses of our car detection system stem

from 2 major issues: our dataset and our computing
resources.

As we mentioned in earlier sections, the discrepancy
between the low-resolution training patches taken from
extreme heights and the high-resolution test patches
taken from our low-altitude drones was likely a major
driver of errors in our classifier. While the UAVs and
satellites that took the training images had the same
perfectly top-down perspective of all the cars, our test
images often had varying perspectives even for different
cars in the same stitched image. If we had access to a
sufficiently large training set more suited for our appli-
cation, our results would most likely be significantly bet-
ter. It’s unlikely that a large enough publicly available
dataset of cars taken from drone heights exists (other-
wise we would’ve found it), so if we wanted to pursue
this we would probably have to capture our own training
footage and label the data ourselves.

Even if we were restricted to the COWC dataset that
we had, we most likely could have produced better re-
sults if we had access to more powerful computing re-
sources (specifically Nvidia GPUs). We trained all of
our models on a standard desktop computer with an
AMD GPU, meaning we couldn’t take advantage of the
GPU-enabled version of Tensorflow. Thus, we had to
restrict our dataset and model structure to have a rea-
sonable training time. If we had more powerful com-
puting resources, we could try to expand the input size
from 48 x 48 to the full 256 x 256 offered in the training
data and thus take advantage of the context (cars tend
to be near roads, sidewalks, other cars, etc) provided
in the image patches to improve accuracy. We could

also then train on more images - we weren’t using the
entire CWOC dataset because training would’ve taken
too long. For reference, while most state-of-the-art con-
volutional nets train on millions of images, we were only
training on tens of thousands of images. More training
images would mean that our classifier would likely gen-
eralize better and be more robust.

8. CONCLUSION
Flyover is a significant technical step towards the gen-

eration of 2-D aerial imagery. This software package
transforms cheap, off-the-shelf drones into capable sys-
tems that can be used everywhere from disaster recon-
naissance to municipal planning. This aerial imagery
generated is generally clear and usable, even to classify
cars; such a feature would be useful in urban planning
and traffic engineering.

We would like to thank Professor Russakovsky and
our advisor, Kyle, for their help with this project. We
would also like to thank Professor Ferencz and Riley for
a great semester.

Notes
1https://www.dji.com/
2https://cloud.pix4d.com/store/
3https://store.dji.com/
4http://optica.csic.es/papers/icpr2k.pdf
5Lecture 4
6https://gdo-datasci.ucllnl.org/cowc/

Figure 18: Oddly relevant

From: https://i.redd.it/5193db0avbey.jpg

	Project Description
	Previous Work
	Approach & Experiments
	Dataset Collection
	Frame Subsampling
	Image Stitching
	Extension: Car Detection
	Version 1
	Version 2

	Documentation
	Code Modules
	Stitcher Module
	Classifier Module

	Dependencies

	Results
	Evaluation
	Qualitative Evaluation
	Quantitative Evaluation: Flyover
	Quantitative Evaluation: Car Classifier

	Discussion
	Strengths
	Weaknesses
	Image Stitching
	Car Detection

	Key Contributions
	Next Steps
	Image Stitching
	Car Detection

	Conclusion

