
– COS429 Written Report, Fall 2017 –

Robustness of Face Recognition to Image Manipulations

Cathy Chen (cc27), Zachary Liu (zsliu), and Lindy Zeng (lindy)

1. Motivation
We can often recognize pictures of people we know even if the image has low resolution or obscures
part of the face, if the camera angle resulted in a distorted image of the subject’s face, or if the
subject has aged or put on makeup since we last saw them. Although this is a simple recognition task
for a human, when we think about how we accomplish this task, it seems non-trivial for computer
algorithms to recognize faces despite visual changes.

Computer facial recognition is relied upon for many application where accuracy is important.
Facial recognition systems have applications ranging from airport security and suspect identification
to personal device authentication and face tagging [7]. In these real-world applications, the system
must continue to recognize images of a person who looks slightly different due to the passage of
time, a change in environment, or a difference in clothing.

Therefore, we are interested in investigating face recognition algorithms and their robustness to
image changes resulting from realistically plausible manipulations. Furthermore, we are curious
about whether the impact of image manipulations on computer algorithms’ face recognition ability
mirrors related insights from neuroscience about humans’ face recognition abilities.

2. Goal
In this project, we implement both face recognition algorithms and image manipulations. We then
analyze the impact of each image manipulation on the recognition accuracy each algorithm, and
how these influences depend on the accuracy of each algorithm on non-manipulated images.

3. Background and Related Work
Researchers have developed a wide variety of face recognition algorithms, such as traditional
statistical methods such as PCA, more opaque methods such as deep neural networks, and proprietary
systems used by governments and corporations [1][13][14].

Similarly, others have developed image manipulations using principles from linear algebra, such
as mimicking distortions from lens distortions, as well as using neural networks, such as a system
for transforming images according to specified characteristics [12][16].

Furthermore, researchers in psychology have studied face recognition in humans. A study of
“super-recognizers” (people with extraordinarily high powers of face recognition) and “developmen-
tal prosopagnosics” (people with severely impaired face recognition abilities) found that inverting
images of faces impaired recognition ability more for people with stronger face recognition abilities
[11]. This could indicate that image manipulations tend to equalize face recognition abilities, and
we investigate whether this is the case with the manipulations and face recognition algorithms we
test.

1

4. Methods
To test robustness of image recognition algorithms, we implement various algorithms and image
manipulations. We then test each of the algorithms with un-manipulated images as well as images
resulting from each of the manipulations. In addition to the absolute accuracy of each of these
combinations, we analyze the trend in each algorithm’s performance on manipulated images to the
algorithm’s performance on un-manipulated images.

We describe our algorithms, manipulations, dataset, and evaluation method in the following
subsections.

Our implementation is available online, as further described in the Appendix (7).

4.1. Algorithms

4.1.1. PCA
We implement this algorithm according to details described in [17], based on the work of [15].

We first find the principal components of the training images, and we call these principal
components “eigenfaces”. To classify a face, we then project the face into the space spanned by
these eigenfaces and project each training face image to the same subspace. We classify the test
face according to the label of the closest projected training face, where we define closeness by the
Frobenius norm of the difference between the test face and each training face.

So the algorithm performs face recognition by solving label(argmin ||Ω−Ωi||2) where Ω is the
coordinates of the test image in eigenface space and Ωi is the coordinates of training image i in
eigenface space.
4.1.2. Sparse Representation
We implement this algorithm according to the descriptions found in [4].

To classify a face, we first encode it as a sparse representation of the training faces. We then
classify the test face according to the label whose training faces receive the greatest weight in this
sparse representation.

So the algorithm performs face recognition by solving min ||c||1 s.t. ||y−Φc|| ≤ ε and then
choosing the label with the greatest weights in c, where Φ is the training images and y is the test
image.
4.1.3. Sparse Representation with Dimension Reduction
We implement this algorithm according to the descriptions found in [4].

We first project the test and training faces to a lower-dimension subspace using PCA, and then
proceed with face classification according to the method described in section 4.1.2.
4.1.4. Sparse Representation with Combined L1 Loss
We implement this algorithm according to the descriptions found in [4].

We first project the test and training faces to a lower-dimension subspace using PCA, and then
find a sparse encoding of the test face using a dictionary with the projected training faces in addition
to the standard basis vectors. Using this sparse encoding, we perform classification as described in
section 4.1.2.

So this algorithm performs face recognition by solving min ||c||1 + ||e||1 s.t. y = Φc+ e, where
the addition of e is intended to allow the algorithm to account for small differences between images
of the same person.

2

4.2. Support Vector Machine (SVM)

While we did not implement this algorithm, we include results from this algorithm as an additional
comparison point. We use the stock support vector machine classifier implementation provided in
the scikit-learn Python library. We use the default parameters, including the use of an RBF kernel
[10].
4.2.1. VGG-based Classification
We implement this algorithm based on the work and pre-trained convolutional neural network of
Parkhi et al., 2015 [9]. Each image undergoes preprocessing before usage in the network. For
the preprocessing, we use the deformable parts model face detector provided by [9] and crop
the detected face from each of the the original images. An example of a face before and after
preprocessing is shown in Figure 1. We also subtract the mean values for each color channel,
provided by [9], from the images prior to using the convolutional neural network.

(a) Original Image (b) Preprocessed Image

Figure 1: Preprocessing Demo (The face is detected and cropped from the original image).

Next, we translate the architecture of the VGG-FACE network for use with the Keras Python
framework and load the pre-trained weights. We feed each face through the network, stopping at
the fc-7 layer to obtain a 4,096-dimensional descriptor for each image.

For each test descriptor w, we calculate its cosine similarity to each training descriptor v. This
is given by arccos v ·w

||v||||w|| . The use of cosine similarity is different from the Euclidean distance
methodology used in [9], which we found to have weaker performance on our dataset. We find the
nearest-k neighboring training descriptors according to cosine similarity and classify the test face
according to the majority vote.

In our experiments, unless specified otherwise, we used the value k = 5.

3

4.3. Image Manipulations

4.3.1. Occlusion
The tendency for external objects to hide parts of people’s faces in images motivates this manipula-
tion. For instance, a large hat or physically faded spots on an image could hide part of someone’s
face, but we should still recognize the image as the same person.

We implement occlusion by selecting a region of the image and randomly resetting the pixels in
this region, and show examples of occluded images in Figure 2. We vary the occlusion window size
to produce dataset images with varying amounts of occlusion.

(a) Original Image (b) Occluded Image

Figure 2: Occlusion Demo (Window size is length of occluded region on one size).

4.3.2. Radial Distortion
Distortions caused by camera lenses motivate these manipulations. In particular, spherical camera
lenses cause two types of radial distortion: barrel distortion disproportionately magnifies pixels
closer to the optical axis and can occur with smaller focal length lenses, while pincushion distortion
disproportionately magnifies pixels farther from the optical axis and can occur with larger focal
length lenses [3].

We mimic barrel distortion according to descriptions found in [5], and adapt this method for
pincushion distortion as described in [3].

We set (i0, j0) as the vertical and horizontal centerline of the image, and replace the pixel at (i, j)
with the pixel at (i

1+kr2 ,
j

1+kr2) where r =
√

(i− i0)2 +(j− j0)2 and k is a selected parameter. A
positive k results in barrel distortion, while a negative k results in pincushion distortion.

We provide examples of pincushion and barrel distortion for various values of k in Figure 3. We
manipulate our dataset images with various levels of radial distortion, as determined by k.
4.3.3. Blur
The possibility for image recognition systems to receive blurry input motivates this manipulation.
We mimic blurry images by replacing each pixel by the mean value of the pixels within a pre-
specified window of the replaced pixel. We manipulate our dataset images with various levels of
blur.

We provide examples of blurred images in Figure 4.
4.3.4. Deep Feature Interpolation
We apply the Deep Feature Interpolation (DFI) algorithm based on the work and implementation

4

(a) Original Image (b) Distorted Image

Figure 3: Radial Distortion Demo.

(a) Original Image (b) Blurred Image

Figure 4: Blur Distortion Demo (Window size is length of window of pixels whose mean replaces
each original pixel).

of [16]. This algorithm provides a framework for performing content editing of a facial image.
It works by interpolating between attributes in the feature space of a deep convolutional neural
network, specifically the VGG network.

DFI is a versatile algorithm which can, for example, make a face look older or add a moustache
to a face, as well as many other possibilities. To make a face look older, it is necessary to find a
attribute vector that provides a mapping from a “younger” image to an “older” image. Thus, for
each target attribute (“senior”, “moustache”, etc.) it is necessary to identify a corresponding source
attribute (i.e. “young”, “no facial hair”).

Given an input image, and a source-target attribute pair, the algorithm applies the following steps:
1. Identify a set of k images in the image dataset which have the source attribute and which are most

similar to the input image. Various definitions of similarity are possible. In the implementation
we used, similarity is defined by filtering on gender and ranking images based on the number of
matching attributes.

2. Identify a set of k images which have the target attribute in the same manner.
3. Map these images to VGG feature space and compute the mean vector of each set.
4. Subtract the mean vectors to compute the attribute vector w.

5

Figure 5: DFI output sample with two manipulation types.

5. Transform the input image into feature space, and add αw, where α is an interpolation parameter.
6. Perform an inverse mapping back into color space by applying the gradient descent method of

[8].
We adapt a sample implementation of this algorithm for our implementation, keeping the original

parameter values of k = 1 and α = 0.4.
Figure 5 demonstrates the results of this algorithm on one image from the dataset. In our

experiments, we use DFI to apply two manipulations: “senior” to make the face look older, and
“moustache” to add a moustache to the face.

4.4. Dataset

We use the Labeled Faces in the Wild Dataset (LFW) [6]. We chose this dataset because it contains
many (13,000) labeled images of different people (1,680 of whom have at least two distinct images
and 62 of whom have at least twenty distinct images). This provides sufficient training data for our
experiments.

Furthermore, each of image is centered on a single face, which provides some measure of
standardization between (non-manipulated) images. This allows us to control the amount and type
of manipulation which we then add in our experiments, which is important because we test the
robustness of algorithms to specific manipulations.

To improve the accuracy of the recognition algorithms, we use an aligned version of the dataset
provided by the DFI implementation. This version of the dataset was aligned using a deep neural
network and has better alignment than the “funneled” versions of the LFW dataset [2].

4.5. Evaluation

We train each algorithm using three instances of each person’s face. We then evaluate each
algorithm’s performance according to its accuracy (correct predictions

total predictions) in recognizing faces on the test
set, which includes the remaining instances of each person’s face.

5. Results and Discussion

Baseline Performance

Our baseline test accuracy with no manipulations on the LFW images is shown in Figure 6. We
vary the number of training faces used per person and calculate the accuracy for each algorithm.
These baseline results indicate that VGG-FACE outperforms PCA, Sparse Representation, and
SVM methods with both 3 and 15 training faces per person. In the interest of computation cost, we
did not test the performance of VGG-FACE on the 10 and 19 training faces per person.

6

Figure 6: Baseline results with no manipulation.

Figure 7: VGG-FACE Results with No Manipulations (The dotted line indicates performance with
Euclidean distance and mean descriptor).

Further adjustments were made to the VGG-FACE network that produced varying results; the
highest accuracy achieved was over 0.98 on non-manipulated images for various values of k, where
k is the number of nearest neighboring training descriptors to compare to for each test image. We
found that preprocessing the images through face detection and cropping improved performance.
In addition, using cosine similarity and the nearest-k neighboring heuristic, instead of Euclidean
distance and the mean of the training descriptors, also improved performance. We show a summary
of the VGG-FACE network’s performance on non-manipulated images of the LFW dataset in Figure
7.

Performance on Manipulated Images

With manipulations, we find support for image manipulations equalizing face recognition ability.
Figure 8 shows test accuracies for each algorithm for each type of image manipulation, using
15 images per face to train. As images are occluded by increasing areas, more blurred, or more
radially distorted, the test accuracies drop for each algorithm. With the exception of the VGG-FACE
algorithm a higher baseline accuracy corresponds to a greater drop in performance on manipulated
images, as shown in the left of Figure 10.

Figure 9 shows the results split by algorithm in order to compare the effects of different manip-
ulations. We observe that in 5 out of the 6 algorithms, accuracy drops severely after applying an

7

occlusion manipulation. Only the VGG model is able to handle occlusions well, and it is able to
maintain close to baseline accuracy for small occlusions.

However, Figure 9 also shows that the DFI manipulations had a relatively small impact on the
accuracy of statistical methods, while it had the greatest impact on the VGG model. This shows
that the statistical models have better ability to generalize the identity of a face to be robust to these
types of content-based manipulations.

In order to compare the change in accuracy across manipulation parameters and different algo-
rithms, we normalize the difference with the baseline accuracies, as shown in the right of Figure
10. The normalized differences indicate that image manipulations does not clearly impair face
recognition accuracy more for algorithms that perform better at baseline.

Figure 8: Test accuracy across all algorithms and image manipulations for 15 training images.

Algorithm Strengths and Weaknesses

With both manipulated and un-manipulated images, VGG far outperforms the other algorithms
in terms of recognition accuracy, and this effect is especially pronounced on occluded images.
We believe that our statistical algorithms perform especially badly on occluded images because
they work by comparing pixel similarities between images – while DFI, radial distortion, and blur
somewhat preserve the pixels themselves, in occluded images a large portion of the image’s pixel
values are completely lost to the algorithm.

8

Figure 9: Test accuracy (using 15 training examples per face) for each algorithm compared across
manipulations. Labels above each bar indicate the corresponding manipulation parameter value
used in that experiment.

However, a major weakness of VGG is its computational cost. Training VGG on 930 un-
manipulated images took around 42 minutes, and subsequently testing it on 2093 test faces took

9

Figure 10: Absolute difference (left) and normalized difference (right) between test accuracies of
different algorithms.

around 12 minutes. For reference, all of the other algorithms together took 11 seconds to train and
less than 3 minutes to test on the same dataset.

Another weakness of the system is sensitivity to the alignment of images. With the VGG
algorithm, accuracy is lower on the original dataset without face detection and cropping, as shown
by the dotted line in Figure 7. We mention in Section 4.4 that the Sparse Representation Algorithms
has much better performance on the aligned version of the LFW dataset than the “funneled” version.
The difference in test accuracies on non-manipulated images between the “funneled” and aligned
LFW datasets is shown in Figure 11. Note that the VGG algorithm used the original “funneled”
images with additional face detection and cropping.

Figure 11: Results on non-manipulated images for “funneled” images (left) and on images for
aligned images (right). There is a major improvement in accuracy scores for Sparse Representa-
tion algorithms.

6. Conclusion
In this project, we implement various face recognition algorithms, ranging from statistical methods
such as PCA and Sparse Representation to deep learning methods such as VGG-FACE. We use

10

the Labeled Faces in the Wild dataset, and transform the face images with different manipulations:
occlusion, radial distortion, blur, and deep feature interpolation.

When comparing the effects of different face manipulations on different recognition algorithms,
we found strengths and weaknesses in the performance of each. Statistical algorithms such as
Sparse Representations and SVMs performed well on DFI content-based manipulations, while deep
learning methods such as VGG-FACE performed relatively poorly on this manipulation. However,
VGG-FACE was able to handle small occlusions, a manipulation which severely impacted the
accuracy of statistical models. This shows how each type of recognition model has its own relative
strengths, suggesting that a combination of techniques can lead to the highest overall robustness to
manipulations.

While VGG-FACE performed the best across non-manipulated and manipulated images, it
displayed the same relative accuracy drop as the other algorithms. This suggests that although
for humans, people with stronger face recognition ability do worse relatively when identifying
manipulated faces, the same cannot be said of stronger and weaker face recognition algorithms.

References
[1] Face Recognition Homepage - Algorithms.
[2] LFW Preprocessing details. · Issue #4 · paulu/deepfeatinterp.
[3] Pierre Drap and Julien Lefèvre. An Exact Formula for Calculating Inverse Radial Lens Distortions. Sensors

(Basel, Switzerland), 16(6), June 2016.
[4] Arvind Ganesh, Andrew Wagner, Zihan Zhou, Allen Y. Yang, Yi Ma, and John Wright. Face recognition by

sparse representation. In Yonina C. Eldar and GittaEditors Kutyniok, editors, Compressed Sensing: Theory and
Applications, pages 515–539. Cambridge University Press, 2012. DOI: 10.1017/CBO9780511794308.013.

[5] K. T. Gribbon. A Real-time FPGA Implementation of a Barrel Distortion Correction Algorithm with Bilinear
Interpolation. 2003.

[6] Gary Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled Faces in the Wild: A Database for
Studying Face Recognition in Unconstrained Environments. Technical Report 07-49, University of Massachusetts,
Amherst, October 2007.

[7] Thomas Huang, Ziyou Xiong, and Zhenqiu Zhang. Face Recognition Applications. In Handbook of Face
Recognition, pages 617–638. Springer, London, 2011. DOI: 10.1007/978-0-85729-932-1_24.

[8] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting them. CoRR,
abs/1412.0035, 2014.

[9] O. M. Parkhi, A Vedaldi, and A Zisserman. Deep Face Recognition. British Machine Vision Conference, 2015.
[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[11] Richard Russell, Brad Duchaine, and Ken Nakayama. Super-recognizers: People with extraordinary face
recognition ability. Psychonomic Bulletin & Review, 16(2):252–257, April 2009.

[12] Silvio Savarese. Camera Calibration Lecture Notes, January 2015.
[13] F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A unified embedding for face recognition and clustering.

In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 815–823, June 2015.
[14] Yiting Sun. Meet the Company That’s Using Face Recognition to Reshape China’s Tech Scene. MIT Technology

Review, August 2017.
[15] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1):71–86, 1991.
[16] Paul Upchurch, Jacob Gardner, Geoff Pleiss, Robert Pless, Noah Snavely, Kavita Bala, and Kilian Weinberger.

Deep Feature Interpolation for Image Content Changes. arXiv:1611.05507 [cs], November 2016. arXiv:
1611.05507.

[17] Rene Vidal. Eigenfaces for Face Detection/Recognition (Course Notes), 2008.

7. Appendix
Our implementation is available online. Our implementation includes a general framework which
allows the user to swap in definitions of any image manipulations and recognition algorithms, as
well as modules that implement each of the manipulations and algorithms we tested.

11

https://github.com/cchen23/COS429_final_project

	Motivation
	Goal
	Background and Related Work
	Methods
	Algorithms
	PCA
	Sparse Representation
	Sparse Representation with Dimension Reduction
	Sparse Representation with Combined L1 Loss

	Support Vector Machine (SVM)
	VGG-based Classification

	Image Manipulations
	Occlusion
	Radial Distortion
	Blur
	Deep Feature Interpolation

	Dataset
	Evaluation

	Results and Discussion
	Conclusion
	Appendix

