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1 Introduction

The task of rotoscoping presents a major bottleneck in modern visual effects pipelines. The term
rotoscoping generally refers to the process of cutting out a foreground subject from a segment of
video footage in order to be combined with other footage. This is commonly used to create scenes
featuring actors in dangerous or inaccessible locations or to integrate live-action shots with computer
generated imagery.

Most professional rotoscoping today is still performed manually by skilled professionals. Artists
carefully create paint masks at a pixel level or trace out regions of the frame with splines. The
outcome of this rotoscoping is an alpha matte, a series of grayscale video frames indicating foreground
and background pixels. This process is a expensive and time-consuming part of the visual effects
pipeline.

The other commonly used method of performing background subtraction is chroma keying, also
colloquially known as “green screening.” Using this method, the foreground subject is filled in front
of a uniformly colored fixed-color background. A single color model for the solid background color
is used to differentiate foreground elements from background [1]. While this method is technically
simple to implement, it requires significant setup and set preparation. For large scenes, it may
be very difficult or impractical to set up a sufficiently sized screen to isolate the background. In
addition, the screen must have a high degree of uniformity and not share any colors in common with
the foreground, placing strict restrictions on lighting and filming options.

This project aims to perform automatic background subtraction with the same ease as chroma-
keying methods without the need for extensive set preparation. More specifically, we aim to create
a video processing pipeline that will create foreground mattes from video footage with a known,
static background. We begin by examining a few existing algorithms, then discuss improvements to
enhance their performance in real-world environments.

2 Related Work

General background subtraction tasks have been addressed before in a variety of contexts. For
instance, variants of the background subtraction task have been the focus of many machine learning
segmentation challenges, such as the Common Objects in Context (COCO) challenge. However,
leading algorithms such as Mask R-CNN [2] developed for these contests specialize in the 80 or so
predefined classes of objects used in the training data set, and so are not as generally applicable for
segmenting the arbitrary objects a visual effects project might encounter.
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Another class of algorithms attempts to automate segmentation by using “trimaps.” Instead
of requiring the artist to produce a pixel-perfect matte, the artist paints rough areas of known
background and foreground. For instance, a Bayesian approach to trimap based segmentation is
described in [3]. While these approaches produce excellent results, they still require an artist to
produce an initial rough segmentation. Our goal is to automate the segmentation process entirely,
and the need to generate trimaps would have complicated the segmentation and testing pipeline.

In the end, the models we used as the basis for our investigation centered on statistical methods for
modeling pixel color distributions. In particular, we examined the pixel-based Mixtures of Gaussian
Model initially introduced in [4] and then later refined in [5]. This model utilizes a mixture of
Gaussian (MoG) model with M components, such that

M
P& X7, BG+ FG) = > (it - N(; fim, 0 21)) (1)

m=1

BG indicates the event that the pixel is background and FG indicates that the pixel is fore-
ground. T is a reasonable time period expressed such that, at time ¢, the training dataset Xp =
(z®, ..., 2*=T)). For each new sample, the algorithm updates the training dataset and re-estimates
p(@| X7, BG).

{fim}M | are the estimates of the means and {#2}M, are the estimates of the variances that
describe each Gaussian component. This makes the important assumption that the covariance
matrices are diagonal. Finally, the mixing weights {#,,}}, are non-negative and add up to one.
{iim M, {G2}M | and {#,,}, are updated using an exponential decaying envelope to limit the
influence of old data. More details can be found in [4] and [5] for the specific implementation.

This proposed algorithm is an online clustering algorithm. The background pixels are modeled
by the clusters with the B most dominant mixing weights 7,,, while the clusters with the additional
least dominant weights model the foreground pixels. Therefore, the background mixture model is
modeled by Equation

B
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If the components were sorted in descending order with respect to their mixture weights and cy
is the maximum portion of the pixel that can belong to the foreground at any instant, then

B
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3 Per-Pixel Multivariate Gaussian Model (MGM)

Given the scope of our project is limited to static backgrounds with very small variations over time
(e.g. small lighting changes), we hypothesize that the mixture of Gaussians model described by [4]
may introduce a lot of complexity to update the model over time that would not be as necessary in
the context of a known static background.

Therefore, we also constructed an algorithm using a simpler per-pixel Gaussian model constructed
from the known background footage. The proposed algorithm then performs a statistical test for
every pixel of every frame to determine whether the pixels belong to the foreground or background.

For a video resolution of L x W pixels, each with k color channels, this corresponds to estimating
L x W multivariate Gaussian distributions with dimensionality k. Since the process for each of the



L x W pixels is the same, we will only consider the process for a single pixel. Represent the intensity
of this pixel with k color channels as the vector & € R*. We assume the user has access to n frames of
static background to train the model with, where the pixel takes on intensity values x4, ..., z,. Thus
we can model the background color at the location of x with a Multivariate Gaussian Distribution
Fpa ~ N(ji,5%I}). To stay consistent with the MOG model, we assume the channels of each pixel
are independent and, thus, all covariances are zero, rendering the covariance matrix diagonal.

The parameters of g are estimated using the Maximum Likelihood Estimators of the Multi-
variate Gaussian Distribution.

Z?zl T

n

(4)

To be consistent with the channel independence assumption used in both MOG and MGM, the
variance of each channel need to be estimated independently by using the Maximum Likelihood
Estimator of the simple Gaussian Distribution:

i =
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Where fi; and &j2 are the j-th color channel of fj and & respectively.

Since we make no assumption on the color or shape of the foreground object, one cannot model
any prior distribution for the foreground channels of each pixel ahead of time. Therefore, generative
binary classification is not directly possible.

By defining the foreground pixels as pixels that are not background, one can use hypothesis
testing on the modeled population Zgg. The null hypothesis states that an observed color z’ is
well-modeled by ¥pg and, thus, belongs to the background, while the alternative hypothesis states
that the pixel is a foreground pixel. For the pixel in question, given a new sample 2’ to be classified,
the test-statistic T is given by:

T=( )" (@) (@~ ) (6)

The null hypothesis now states that T is distributed under Chi-Squared while the alternative
hypothesis states that T is distributed under non-central Chi-Squared. By determining the degrees
of freedom from the dimensionality k of the channels vector (DoF = k, as the channel components
are assumed independent of one another), picking the right confidence level and then using the
appropriate threshold values for the test-statistic [6], one can determine whether an observation
belongs to the foreground or the background for a given pixel. This process is done in parallel for
each pixel in the video frame.



4 Background Subtraction Pipeline
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Figure 1: Background Subtraction Pipeline

This section describes the pipeline developed to perform background subtraction on a video se-
quence. The pipeline has been modularized so that it is compatible with both algorithms evaluated.
Algorithms were implemented in Python, leveraging the scikit-video [7], NumPy [§], and OpenCV
[9] libraries. An illustration of the pipeline is shown in Figure

The pipeline is initially fed a video sequence of pure background. The pipeline then trains the
selected algorithm (MOG or MGM) on the background video sequence. For MOG, this implies
creating an OpenCV MOGSubtractor and running it through the video to populate its training
dataset with purely background frames.

The pipeline is then given the video sequence of the background overlaid with the foreground
objects. At each frame, the pipeline extracts the desired color channels to match the target color
space. More details on the choice of color spaces and channels used can be found in section 5. The
resulting frame is fed into the trained model, which classifies every single pixel as foreground or
background and outputs a matte, typically with a good amount of speckles and small holes on the
foreground object. The speckled matte is then despeckled by having a median filter of fixed size be
applied multiple times on it. Thus, the final matte is produced.

The pipeline code for the MGM model is found in gmm mov.py and for the MOG model is found
in mog_mov.py. All code implementation was performed in Python. The MGM model was developed
from scratch with the help of NumPy. For the MOG model, an OpenCV implementation was used.
The Despeckling median filter implementation was also lent from OpenCV, while OpenCV assisted
in the color channel extraction as well. The videos were processed with the help of scikit-video.



5 Testing Methodology

Foreground on Green
Screen

Classification Rate
False Positive Rate
Foreground Recall
Foreground Precision
Foreground F_Measure

- —

Extract FG and

Overlay on BG; Metrics
Extract GT Computation
.py script
Blender Software -
Original Background Ground Truth Frames
Background
Subtraction
Pipeline
Y
Background Overlaid with Matte

Foreground Object

Figure 2: Testing Pipeline

To avoid having to manually label thousands of frames of test footage for evaluating our algorithms,
we generated test videos using the Blender open source video effects software. Three foreground
clips were used, one from the famous “Just Do It” video to represent a human subject, and two
recorded in a studio with a mix of slow moving and fast moving subjects. These foreground clips
were segmented using standard chroma-key processes, then overlaid onto one of two backgrounds.
The two backgrounds used were an indoor scene and an outdoor scene captured on the Princeton
campus.
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Figure 3: Blender Testing Footage Generation



The chroma-key process’s output mattes were used as ground truth data for evaluating our
segmentation pipeline. Custom Python scripts utilizing Scikit-video and NumPy compared the
output segmentation produced by our algorithms with the ground truth mattes and calculated key
performance statistics.

6 Algorithmic Optimization

The initial output produced by the algorithm was promising, but two notable issues remained. First,
on some testing sequences there were frames where the camera autofocus caused the brightness of
the entire frame to change. While this made a very small perceptual difference, it caused the
segmentation algorithms to fail spectacularly.
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Figure 4: Color Space Brightness Sensitivity

To solve this sensitivity to brightness variations, we explored different color spaces instead of the
default RGB. In particular we explored the YUV color space, which explicitly breaks out perceptual
brightness into the Y or luma channel. Since the color content remained isolated in the two chroma
channels (U and V), it was hypothesized that the simple color models being used would better be
able to distinguish a change in brightness from a change in actual color content. In contrast, using
RGB color space all three channels would vary in unpredictable ways under lighting changes.

The other major issue that appeared early on in testing was the existence of noise in the output
mattes. Likely the result of compression artifacts or sensor noise, these manifested themselves as
small specks a few pixels wide randomly strewn across the output matte. To combat this noise,
a variety of despeckling approaches were considered including Gaussian blur and edge detection.
Ultimately, a simple median filter appeared to produce the best results with minimal computational
cost. The impact of various parameters including filter size and iterated application of the filter
were examined.



7 Performance Evaluation

Performance Evaluation is comprised of two parts: Color Space and Median Filter Configuration.
In the former, the metrics measured in each video are averaged to identify which color space and
channel configuration have the best performance for each algorithm. The only exception is the
Foreground (FG) F_Measure which is recomputed for each configuration from the average Recall
and Precision across all videos. The F_Measure is the harmonic mean of the FG Precision and FG
Recall and is a measure of the algorithm’s accuracy in identifying specifically Foreground pixels
successfully.
In both parts, the evaluation metrics used are the following:

1. Classification Accuracy to evaluate the classification methods used in overall

2. False Positive Rate, to identify how often the algorithms selected background elements for
foreground, which quantifies the extent to which the Binary Masks produced are distorted by
background noise and misclassified objects.

3. Foreground Recall and Precision, to be able to compute the Foreground F_Measure, a metric
for meaningful comparison of the various algorithms and configurations in their ability to
correctly identify the foreground pixels.

Therefore, these metrics adequately capture the two core goals of the task: A) Correctly identify
foreground pixels and B) Minimize misclassificiation of background noise and objects as foreground.

Color Space oriented performance evaluation is undertaken to identify the best-performing color
space and color channels for the background segmentation task. The color spaces considered are
YUV, UV, RGB and RGB whose luminance has been set to a constant level for all pixels (RGB-No
luma). In both methodologies, the YUV color space seems to outperform all other alternatives in
the two key metrics: Classification Accuracy, by a small margin of 0.5%-1.0%, and FG F_Measure,
by a wider margin of 2%-7%, as evident from the first table below. It is important to note that the
lowest False Positive rate (False FG on the first table), measuring percentage misclassified of BG
pixels as FG, is attained by the configuration that completely isolates out luminance by considering
only the U and V channels in the YUV color space. Finally, the configuration fixing the luminance
value for all pixels, seemed to be completely outperformed in all metrics.

All metrics are means over all frames Average Performance over All 6 Videos
of the video Accuracy False FG FG Recall FG Precision FG F-Score

Color Space and
Channels Used

RGB 07.46% 0.58% 85.15% 91.73% 87.38%

oG RGB-NoLUMA  9590% 3.95% 80.66% 83.82% 81.55%
vy 110% 90.61%

v 95.93% 82.07%

RGB 96.18% 4.16% 78.79% 86.23%

RGB-NoLUMA  96.83% 0.65% 83.90% 89.85% 86.56%

B TR

uv 96.79%

2.92% 97.61% 83.08%

82.36%

86.87%

Figure 5: Effect of Color Spaces on Background Subtraction Performance

Given despeckling is introduced into the pipeline in the form of median filtering, the median
filter configuration is being investigated. The goal is to identify if despeckling improves performance



at all and, if it does, what the best configuration is. In both algorithms, introducing despeckling
significantly improved results, as evidence from the very sizable improvement we see across all
three metrics with the introduction of median filtering, as evident from Figures [0} [7] and [§] On the
contrary, there are very minor improvements in performance as the size of the median filter increases,
seeming to perform the best at size 5 by a very small of margin in all three metrics (see Figures @,
Iﬂ and. At the same time, sizable improvements are identified across all metrics as the number of
iteration one applies the median filter increases. However, increasing the number of iterations above
the range 10-20 not only leads to gradually deteriorating performance, but also significantly increases
the computational time needed to perform the matte extraction. This is because the magnitude of
the operations increases proportionally to O(N?), where N is the number of pixels on each side of

the frames.

Median Filter Application lterations - Accuracy

Filter Size

Zivkovic MOG - YUV

Per Pixel MGM - YUV

1 10 100 1 10 100
0 (no filtering) 90.57% 97.46%
3 95.78% | 9622% | 9628% | 99.27% 99.53% 99.53%
5 96.19% 96.19% 96.04% 98.30% —
7 96.19% 96.04% 95.62% 99.57% 99.57% 99.20%
Figure 6: Effect of Median Filter Parameters on Classification Accuracy
Median Filter Application lterations - FG F_Measure
. . Zivkovic MOG - YUV Per Pixel MGM - YUV
Filter Size
1 10 100 1 10 100
0 (no filtering) 66.13% 90.89%
3 81.70% | 8342% | 8348% | 97.23% 98.19% 98.21%
5 83.29% 83.27% 82.57% 92.29% 98.51%
7 83.28% 82.60% 80.85% 98.36% 98.39% 97.07%
Figure 7: Effect of Median Filter Parameters on Foreground F_Measure
Median Filter Application Iterations - False Positive Rate
. . Zivkovic MOG - YUV Per Pixel MGM - YUV
Filter Size
1 10 100 1 10 100
0 (no filtering) 6.81% 2.62%
3 0.83% 032% | 081% | 063% 0.39% 0.38%
5 0.36% 0.32% 0.36% 0.35% 0.34%
7 0.32% 0.37% 0.57% 0.34% 0.34% 0.66%

Figure 8: Effect of Median Filter Parameters on False Positive Rate



8 Results and Discussion

Based on the quantitative analysis performed, the YUV color space seems to be the best color space
configuration to perform background segmentation with Gaussian-based models. It achieves 97.86%
and 97.61% classification accuracy, and 89.16% and 89.24% FG F_Measure for MOG and MGM
respectively, both pairs being the highest compared to the other color spaces used. Therefore, it
seems that isolating out luminance, although significantly minimizing the false positive error rate,
it does not give rise to the best performance overall. This is most probably because luminance
also encodes useful information in discerning background and foreground pixels, which is consistent
with the state of the art Mask R-CNN approach described in [2], which does not exclude any color
channels.

The explanation of why the YUV space works the best compared to RGB alternatives stems
from the RGB equations themselves:

R=Y +1.140V
G =Y —0.395U — 0.581V
B =Y +2.032U

All three color channels depend on the luminance channel Y. Therefore, these three channels vary
in the same direction as the image brightness varies, which implies a high covariance between the
three color channels. This is also evident in Figure[d] which indicates how the RGB channels behave
with lighting variations. On the contrary, the U and V channels do not vary as color brightness
changes because they only encode chroma; all the brightness changes are captured by the Y channel.
Therefore, there is less correlation due to lighting between the Y, U and V channels compared to the
RGB color space. This is more consistent with our independence assumption that the covariance
between any two pixel channels is zero, because of the assumed independence of the pixel channels.
Since YUV better represents this assumption, it makes sense why YUV performs moderately better
than the rest of the color space configurations.

Despeckling also improved performance substantially, as classification accuracy increased by 2%-
5%, the false positive rate dropped by 2% - 6.5% and the FG F_Measure improved by 7%-15% with
the introduction of a single iteration of a median filter. The median filter effectively removes isolated
and tiny neighborhoods of speckles while filling up gaps in foreground objects. The choice of the
filter does not matter as much, and 3x3, 5x5 and 7x7 median filters performed equivalently (see
Figures @ and . The number of times that the filter was applied seemed to matter though, as
applying it a single time did not deal with larger neighborhoods of speckles, while applying it too
many times was eroding edges and corners, leading to the classification of a lot of background pixels
close to the object as foreground. Therefore, applying the median filter approximately 10 times
seemed to give out the best results both qualitatively and quantitatively.

According to Figure [} MOG and MGM have comparable performance across all videos given,
despite each performing better than the other on particular video sequences. This is because their
average performance on each of the three metrics used was equivalent. Therefore, it seems that
for complex backgrounds with multiple or single objects performing various types of motions in the
foreground, a running Gaussian model performs equally well as a pre-trained Gaussian model.

9 Conclusion and Future Work

In this project we have successfully created a system for performing background subtraction in video
footage with a known static background. Building off of existing global and per-pixel approaches to
pixel color modeling, we examined enhancements in the form of color space conversion and median
filtering to improve the robustness of these background subtraction models to lighting variation and



noise. Over a diverse dataset of composited foreground and backgrounds, we achieved average pixel
classification accuracies of over 97% and F-scores of over 99% with near real-time performance.

However, there remains room for further exploration. The fundamental assumption of a static
background is widely applicable for studio-shot footage, but it would be highly beneficial to account
for small camera motion. Assuming the camera doesn’t make sudden movements, it may be possible
to use optical flow to track simple camera pans or deviations and update the per-pixel color models
accordingly.

Furthermore, the exploration of different color spaces could be expanded to include other map-
pings such as the Lab color space. While the YUV color space improved performance for most
subjects, we found that it would struggle with certain subjects with desaturated gray colors.

In the end, rotoscoping represents an important element of the visual effects pipeline, and im-
provements to segmentation algorithms stand to greatly improve the flexibility and accessibility of
advanced compositing techniques.

10
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