
Implementing Localization and Mapping

Divya Thuremella, Samhita Karnati, Roopa Ramanujam

16 January 2018

1 Introduction

Simultaneous Localization And Mapping (SLAM) is an optimization problem
that has been around for many years. The basic principle of the problem in-
volves estimating the location of a vehicle (such as a robot) while simultaneously
mapping its surroundings. This is usually referred to as a ”chicken and egg”
problem because accomplishing one of these tasks helps the other perform better.
Estimating the position of the vehicle is made more accurate by incorporating
information about its surroundings, and the positions of its surroundings are
calculated more accurately when knowledge of the vehicle’s position is more
known with certainty. This is an important problem because it has many cur-
rent real-world applications such as in autonomous vehicles and underwater and
space exploration, where these vehicles need to chart accurate paths while map-
ping their surroundings using different sensors. Visual SLAM is an approach
that is especially of interest because it is one of the most cost effective methods,
since it only requires a camera. This project was inspired by the SLAM opti-
mization problem, but implements localization and mapping separately without
the feedback loop between them.

2 Related Work

Much work has been done in the interest of optimizing SLAM. In ”Large-Scale
Direct SLAM with Stereo Cameras,” Engel, Stuckler, and Cremers proposed
an approach that does not involve interest point based methods, but instead
aligns stereo images based on pixels of high contrast. They tested the method
on the KITTI and EuRoC data sets with excellent results. In ”ORB-SLAM2:
An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras,”
Mur-Artal and Tardos implemented a similar system for monocular, stereo, and
RGB-D cameras, and evaluated it on the KITTI data set. Finally, in ”Stereo
Parallel Tracking and Mapping for robot localization,” Pire et al. created a
SLAM system with stereo that specifically focused on the parallel nature of the
problem, in order to be able to work in a large-scale setting. They found that
their method was highly accurate, tested with the KITTI dataset.

1

3 Datasets

For this project, we used two datasets: the Malaga Campus RT dataset and
the KITTI raw dataset. We used these datasets on the recommendation of our
adviser and because they both have both stereo images as well as ground truths
that would allow for quantitative analysis.

1. Malaga dataset
The Malaga Campus RT dataset includes stereo images (from left and
right cameras) at 7.5 fps. Fig. 1 shows an example of the included stereo
images.

Figure 1: Left and right stereo images from the Malaga Campus RT dataset at
timestamp 1226226123.

The images are from a drive down a relatively empty road (therefore the
”world” objects around the car are stationary). It is important to note
that the road that the car drives on has many twists and turns; in fact,
the first thing the car does is take a left turn. This dataset also includes
GPS ground truths that have associated covariance matrices, but these
ground truths don’t exist for all frames.

2. KITTI dataset
The KITTI dataset we used is one of their raw data visual benchmarks.
We downloaded the synced and rectified stereo images as well as their
system’s calibration information. Fig. 2 shows an example of the KITTI
stereo images.

2

Figure 2: Left and right stereo images from the KITTI dataset at timestamp
0000000001.

Like the Malaga dataset, the KITTI dataset was taken on a drive where
there were almost no other moving objects. One important difference
is that the path of the car was relatively straight. Although the road
itself exhibits a slight curve, there were no turns made by the car. The
KITTI dataset also includes GPS ground truths (without covariances)
and velodyne ground truths. The GPS ground truths exist for each frame
taken.

4 System Design and Implementation

The goal of our project was to implement a system that performed localization
and mapping given a sequence of sets of stereo images. See Appendix 1 for
descriptions of each file that we wrote to make this system.

4.1 Extracting features

In order to extract features from the images, we used the MATLAB detectSURFFeatures

function. After extracting SIFT features from the left and right frames of the
same timestamp, we used the matchFeatures function to find the features that
existed in both frames. Fig. 3 shows an example of matched left and right frame
features.

3

Figure 3: Example of matched left and right feature points from the Malaga
dataset. Blue indicates left and red indicates right. Green lines indicate which
features were matched.

We repeated the same steps to extract features from the subsequent set of
stereo images in the consecutive frame.

Next, we matched feature points across consecutive frames, again using the
matchFeatures function. Fig. 4 shows an example of feature points matched
across two consecutive timesteps as seen from the left camera.

Figure 4: Example of matched features across two consecutive timesteps.

4

4.2 Going into 3D coordinates

The next task was to project these 2D image coordinates into 3D world co-
ordinates. This involves calibrating the cameras in order to triangulate the
3D points. To do so, we first estimated the fundamental matrix F using the
estimateFundamentalMatrix function, specifying that it use RANSAC. The
input to this function was the set of points that were common between the left
and right cameras, the number of iterations to be used in RANSAC, and the
threshold to be used in RANSAC. Since we were using two frames, each with a
set of points that were common between the left and right camera, we decided
to calculate the fundamental matrix twice, once for each consecutive frame, and
compare them to make sure we were getting a similar answer from both. At first,
the two consecutive frames yielded two different fundamental matrices, which
seemed like a problem. However, when we increased the number of iterations
to be used in RANSAC, the fundamental matrices calculated by each consecu-
tive frame looked similar to each other. Therefore, we concluded the RANSAC
must have gone through enough iterations to be convergent. For threshold,
we used the default value provided. Next, we specified the camera parameters
(cameraParameters is an object type that we could specify in MATLAB) using
the intrinsic matrices (K1 and K2) for each of the cameras. An intrinsic matrix
K takes the form

K =

fx s x0

0 fy y0
0 0 1

where fx and fy are the focal length of the camera, x0 and y0 are the principal
point offsets, and s is the skew. All of these parameters for each dataset could
be respectively found in the Malaga dataset paper and the KITTI calibration
files.

Next, we calculated the relative camera pose (rotation matrix and translation
vector) by using the function relativeCameraPose. It takes in the fundamen-
tal matrix, left camera parameters, right camera parameters, and the set of
matched points between the two cameras. Finally, we used the triangulate

function to determine the 3D projection of our 2D image coordinates. Fig. 5
shows an example of the output of the triangulate function.

5

Figure 5: The left image shows the same as Fig. 4 and the right image shows
the same 2D image points plotted in 3D coordinates.

4.3 Implementing RANSAC to calculate the 3D affine
transformation

The next task was to determine the 3D affine transform from one 3D world
coordinate to the next. After searching, we realized that MATLAB only has a
2D affine transform estimation function and that the 3D version only exists in
the OpenCV library, which we had been unsuccessful in installing previously.
Thus, we thought that this would be a great opportunity to write from scratch
an algorithm that we had learned in class.

We created a function called findAffine3D that performs RANSAC to esti-
mate the 3D affine transform. It takes in as parameters both sets of 3D points,
the number of iterations to be performed in RANSAC, and the error threshold.

To calculate the 3D affine transform, we followed these steps:

1. For the number of iterations specified, we first randomly chose 4 pairs of
points (4 3D points from timestep 1, and the corresponding 4 3D points
from timestep 2) and converted them into homogenous coordinates by
concatenating a fourth column of ones to the three-column vector of points.

2. Then, we calculated the transform that took the points from timestep 1 to
timestep 2 by the equation 3Dpoints1 ∗T = 3Dpoints2, where 3Dpoints1
and 3Dpoints2 are 4 corresponding 3D points (in homogenous coordinates)
from timestep 1 and timestep 2 respectively, and T is the transform that
takes the points from one timestep to the next. This equation can be
solved by calculating T = 3Dpoints−11 ∗ 3Dpoints2.

3. Taking the transform calculated from the 4 corresponding points, we ap-
ply the transform to each point in the set of all 3D points for timestep
1, and calculate what we would estimate the corresponding 3D point in

6

timestep 2 to be according to the equation 3Dpoints1 ∗ T = 3Dpoints2.
If the difference between our estimation of the corresponding 3D point
in timestep 2 and the actual given point in timestep 2 is less than the
specified threshold, we consider that point an inlier.

4. After having done the previous step for each 3D point given in the input,
we calculate whether or not our inlier to total number of points ratio is
greater than 50%. If it is, we exit the loop and save the transform as well
as the indices of the inliers to the transform. If not, we continue until the
loop finishes.

(a) If the for loop finishes without having found more than 50% inliers,
we simply take the transform (and the corresponding indices of its
inliers) that had the maximum number of inliers.

(b) If the loop finishes without having found any inliers at all for any
of the transforms calculated, we double the threshhold and redo the
above steps until we’ve found a transform that has some inliers.

5. After finding the transform, we refit the transform to its inliers by using the
equations 3Dpoints1 ∗ T = 3Dpoints2 and T = 3Dpoints−11 ∗ 3Dpoints2
except this time, 3Dpoints1 and 3Dpoints2 are lists of all the inliers (more
than 4 sets of points). Because there are more than 4 sets of points,
solving this equation essentially calculates the transform with the best
least squares fit (solves min(3Dpoints1 ∗ T − 3Dpoints2) with respect to
T). If there are less than 4 sets of points, this equation will have a rank
of less than 3 and therefore 3Dpoints1 won’t be invertible. Therefore,
for transforms with less than 4 inliers, we simple use the transform as is
instead of refitting it.

4.4 Estimating the next location

With the 3D affine transformation calculated, the last step of our system was
to calculate the next location. Since transform calculated is the transform that
takes the 3D points from one timestep to the next, we simply have to apply the
same transform to our current position to get what the next position will be
from our current frame of reference.

4.5 Estimating map points

To get the location, we simply had to apply the given transform to our cur-
rent location. Transforming the given map points to the appropriate coor-
dinates, however, was a bit more tricky. Every map coordinate observed at
timestep n was its location at timestep 1 multiplied by the transform matrices
that have been compounded since timestep 1. Essentially, 3Dpoints1 ∗ T1 =
3Dpoints2, 3Dpoints1 ∗ T1 ∗ T2 = 3Dpoints3, 3Dpoints1 ∗ T1 ∗ T2 ∗ T3 =
3Dpoints4...3Dpoints1 ∗ T1... ∗ Tn = 3Dpointsn. Therefore, an observation at
time n has to by multiplied by 3Dpoints1 = 3Dpointsn ∗ (Tn... ∗T1)−1 to figure

7

out what its coordinates are in the original coordinate system we started with
(the coordinate system that the locations are calculated in, where the left cam-
era at the first timestep is considered the origin). This was done efficiently by
keeping track of the compounded T ’s that have occured so far, and multiplying
it by the current T at each step of the iteration.

It should be noted that T1, T2, ...Tn are always invertible because they are
affine transforms. Affine transforms take the form[

R t
0 1

]
where R is a 3x3 rotation matrix, t is a 3x1 translation matrix, and 0 is a 1x3
matrix of 0’s. Since rotation matrices are orthonormal, the first three columns
of the transform span 3D space, so the first 3 columns have a rank of 3, and the
1 in the bottom right position forces the matrix to have a rank of 4, making it
invertible because it’s a 4x4 matrix.

4.6 System output

We decided that the most useful output of our system would be a graph that
includes both the localization aspect (the estimated path of the car) and the
mapping component (the 3D points that the car thought it saw at each loca-
tion) on the same graph. We also wanted the option for this graph to include
the ground truth. We wrote methods for each of the datasets that would do
this mapping: mapMalaga and mapKITTI. Each of these functions had to make
the necessary adjustments to the ground truths such that they were in relative
coordinates. For example, the KITTI dataset reports ground truth locations in
lattitude, longitude, and altitude. Thus, we had to get flat world coordinates
(using the lla2flat function) for it to be a useful comparison against our cal-
culated positions.

The dataset-specific map functions each call map.m, which is a function that
we wrote to actually create the system output. This is the file that actually
estimates the next location using the calculated transforms.

5 Evaluation Methods

5.1 Qualitative Evaluation

For the qualitative evaluation, we plotted the 3d world points in blue and our
estimated trajectories in red. We expected to see the 3d points in blue to
construct a structure similar to a road, since that is what both the KITTI and
Malaga datasets are comprised of (driving down relatively empty roads). We
also expected to see our trajectory as a red line heading down the middle of the
blue points that formed the road. We also managed to plot the ground truth
locations in green with our estimated locations in red and the estimated 3d

8

world points in blue. We predicted that while our estimated trajectory might
not fall on the ground truth trajectory exactly, it would assume the general
shape and path of the ground truth trajectory.

5.2 Quantitative Evaluation

One of the important quantities to evaluate in the system was translational
drift, especially by varying conditions and observing the effect on the drift. The
average translational drift was calculated by finding the difference between the
ground truth location and the estimated location in each dimension (x, y, z), and
then using the MATLAB norm function to get the magnitude of the differences
in each dimension. This metric was mentioned in several papers, including the
ones discussed above.

One of the key evaluations mentioned in ”Large-Scale Direct SLAM with Stereo
Cameras” was decreasing the image resolution and seeing how the calculated
drift responded to the change. We followed the same method, decreasing the
resolution of images by half from 1 (full resolution) to 1/8, and calculating the
translational drift for each decreased resolution. The average drift, total drift,
and RMSE of the drift were calculated for several runs of each resolution, and
averaged out. This evaluation was performed using the KITTI dataset and the
Malaga dataset.

Another quantitative evaluation method involved tracking the drift over pe-
riods of distances traveled to see how drift is affected by time. ”Large-Scale
Direct Slam” also does this and tracks the RMSE drift over a period of 800
meters. In the KITTI dataset, this was done over a period of 60 meters. In the
Malaga dataset, this was done over a period of 80 meters. This was done several
times for both datasets and then averaged out. We predicted that drift would
get worse over time because since each position is calculated using the previous
position, the errors in predicted position would compound and lead to the drift
becoming worse.

6 Initial System Results

6.1 Qualitative Results

The graphs of our localization and mapping generally look like the graph in Fig.
6. Our output graphs encode the estimated location in with red points, and the
3D points in blue. Here, we can see that the blue points form a type of road
that the cameras saw as the car was driving and the red position line goes in
a relatively straight line, which is consistent with the KITTI car driving on an
almost straight road.

9

Figure 6: Example output when system is run on all frames of the KITTI
dataset.

Fig. 7 shows an example of a not as good run of the system. As RANSAC
uses random sampling, there is high variability in the output of the system.
Since the 3D world points are plotted based on the estimated affine transform
and the associated predicted position, a misstep in the position of the car also
results in a cluttering of the 3D world points. In Fig. 7, we see what looks like
many sets of parallel lines that make the overall road messy. This is because of
such missteps in the location that caused the roads to be plotted at a variety
of angles. Comparing the red line with the ground truth green line, we see that
our predicted path is similar to the ground truth.

Figure 7: Output when system was run on 50 frames from KITTI.

With fewer frames used, it is easier to see the road and the straight line that
the car takes. Fig. 8 is an example of the output we got when we ran the system
with 20 points from a straight section of the Malaga dataset. The path of the

10

car is very straight and the road is pronounced. We predicted that drift would
get worse over time, as we mentioned in the quantitative evaluation methods
section, which is qualitatively confirmed when comparing outputs of few frames
with those of many frames.

Figure 8: 20 points from Malaga dataset.

When we first ran our system with the Malaga points, we got graphs that
looked like the graph in Fig. 9. It is incredibly messy and looked like the algo-
rithm had lots of difficulty determining what the locations should be. However,
when we looked at the images it was using, we noticed that the very first thing
the car does is take a ninety-degree left turn. Zooming into the graph (shown in
the zoom box in Fig. 9), we see that the algorithm did in fact see this corner and
plot it, but that after the turn, the location was extremely hard to determine.

Figure 9: Effect of corner on rest of algorithm, from Malaga dataset.

We suspect this difficulty with turns is because the turns are rather fast and
the parts of the images seen by the stereo videos in one time step has very little
overlap with that seen by the stereo videos in the next timestep. Therefore even
if many features were detected and matched between the stereo pair of images,
there were very few common features between the stereo pair images in one
timestep and the stereo pair images in the next timestep. Even when looking
at these images by eye, it was difficult to see that they were from the same run
sequence, and even knowing that they were from the same run sequence, it was

11

difficult to pinpoint where they matched up by eye. Therefore, we used straight
line sections of the Malaga dataset for our quantitative evaluation. This also
makes the dataset more comparable to the KITTI dataset.

6.2 Quantitative Results

The results of the image resolution evaluation on the KITTI dataset are shown
below:

Figure 10: Effect of decreasing image resolution on translational drift using
KITTI dataset

Figure 11: Effect of decreasing image resolution on translational drift using
Malaga dataset

12

Figure 12: Effect of decreasing image resolution on translational drift

Figure 13: Effect of decreasing image resolution on translational drift from
”Large-Scale Direct SLAM with Stereo Cameras”

Not surprisingly, the drift seemed to generally increase as the image reso-
lution decreased. There was a general substantial increase in the RMSE and
average drift as the image resolution decreased for both the Malaga and the
KITTI datasets, which was to be expected. However, what was surprising was
that the total drift reached an optimum low point at 1/2 image resolution, and
that this was a consistent trend reflected in both the Malaga and The KITTI
datasets. One possible reason for this trend may be that the feature detectors
are finding noisy repetitive features like trees, and wrongly matching them to
parts of other images that are just similar looking trees, not the same trees.
Our hypothesis is that when the image resolution is decreased to 1/2, the noise

13

of the image is smoothed over, and the features detected don’t have as much
noise and are less repetitive, making them better features to detect. When the
image resolution was decreased to 1/8, however, the map function didn’t run
at all, probably because the number of feature points detected was too low to
triangulate and form a reasonable transformation hypothesis out of. It was also
interesting to note the difference between the total drift in ”Large-Scale Direct
SLAM with Stereo Cameras” and our implementation - they had total drifts
anywhere from 0.2 to 9.0 meters, while ours ended up averaging out to about
850 meters. This is probably because they implemented the update part of
SLAM, while we implemented localization and mapping separately.

The RMSE of the drift and average drift increase when the image resolution
is decreased, while the total drift reaches an optimum low point at 1/2 reso-
lution. This is similar to the results seen in the KITTI dataset in the same
evaluation above. When the image resolution was decreased to 1/8, the map
function couldn’t run at all and there were no results.

In figures 12 and 13, we can see that there is a similar trend of declining trans-
lational drift in the graphs as the image resolution increases from our algorithm
with the KITTI and Malaga datasets, and in the graph from ”Large-Scale Di-
rect SLAM with Stereo Cameras.” However, the paper mentioned that they
were able to still achieve a reasonable drift even with an image scaled down to
1/8 its size and therefore found a useful method for preserving accuracy while
decreasing computation time, which we were clearly not able to do as our drifts
were relatively high.

Figure 14: Table representation of drift over segment length for KITTI dataset

14

Figure 15: Graph representation of drift over segment length for KITTI dataset

Figures 14 and 15 show the effect on drift over segment lengths of the KITTI
dataset. As was expected, the drift consistently increased with each segment
length, with a slight leveling between 40 and 50 meters. This supported our
hypothesis that since the error compounds by building off of its last erroneous
hypothesis and adding extra error at each step, the drift towards the end of the
run was significantly larger than the drift at the beginning of the run.

Figure 16: Table representation of drift over segment length for Malaga dataset

15

Figure 17: Graph representation of drift over segment length for Malaga dataset

Figures 16 and 17 show the effect on drift over segment lengths of the Malaga
dataset. The drift over segment length for the Malaga dataset also increased
consistently for the most part, except for a slight drop off between the 50 and
60 meter segment. This generally followed our hypothesis of the drift increasing
due to compounded error, and makes sense in the context of our calculations.

7 Implementing a Kalman Filter

What the Kalman filter essentially does is that it combines two measurements
taken two different ways with two different uncertainties into one measurement
that usually has a lower uncertainty than either of the two measurements that
make it up. The way it does this starts with two assumptions: that each method
of measurement can be modeled by a gaussian. The first of these methods, called
the prior, or p(x), is the probability function of the measurement that we are
calculating (our ground truth position). The mean of this probability function
is the exact number that we have calculated through stereo odometry (because
using maximum likelihood estimation, the likelihood of the probability function
is maximized when the mean of that probability function equals the observed,
or in our case, calculated, value), and its covariance, P , is a measure of how
uncertain we are about our measurement/calculation. The second way of mea-
surement, called the likelihood, or p(z|x), is the the measurement z, and is
related to the prior in some way. In our case, z is the ground truth, and it is
related by z = x+w, where w is gaussian noise with zero mean, and covariance
R and x is the true position of the car. Since we have the covariance matrix of

16

the ground truth measurements for the Malaga dataset, we equated R with the
dataset’s covariance matrix. Essentially, using these probabilities, what we are
trying to find is x, the true position of the car. Therefore, the probability we are
trying to calculate is p(x|z) = p(z|x) ∗ p(x)/p(z). This probability distribution
will be a gaussian (since we assumed that p(z|x) and p(x) are gaussians and we
can get p(z) by integrating p(z|x) ∗ p(x)), whose mean (which is its maximum
and most probable value) and covariance we can calculate. By expanding these
probabability distributions into their multidimensional gaussian representations
(definition of a gaussian in terms of its mean and covariance), and using ma-
trix manipulation to make the equation take a useful form (from the notes of
Paul Newman, Oxford University), we can get the equation to look like this:
x|zmean = xpriormean +W ∗ v and Covx|z = P −W ∗S ∗WT where the innova-
tion, v, is v = z − xpriormean, the innovation covariance, S, is S = P + R, and
the Kalman Gain, W , is W = P ∗ S−1.

Figure 18: Figure taken from online notes by Oxford University Professor Paul
Newman.

This means that at every frame, we have a prediction of where we think our
location is based on multiplying our current location by the translation matrix.

17

According to the equations in the above figure, this translation matrix is repre-
sented by F .

As stated before, P is how certain we are about our measurement. However,
at the very beginning of the algorithm, we are 100% certain about our location
because we are defining the coordinate system by placing ourselves at (0,0,0)
when we first start out. Therefore, at the beginning, P consists of all 0’s.

The matrix Q in the above figure represents the uncertainty added to our own
measurements at each iteration. This is a quantity that we can control. By
making the elements in Q close to 0, we are saying that we are very certain
about our measurements, and by making the elements of Q large, we are saying
that we are very uncertain that our measurements are correct.

When there is ground truth data we update the prediction using the ’update’
equations (derived in the above paragraphs). These equations take our predic-
tions as the prior and multiply it by the ground truth ’likelihood’ to get the best
estimate of the true x. These equations are implemented in our kalmanFilter.m
file

We had originally intended to use the Kalman Filter to incorporate both the
stereo odometry measurements we had calculated, and the vehicle odometry that
is calculate using the motion of the wheel, but we were unable to find datasets
that contained both stereo video, and vehicular wheel odometry. Therefore, we
performed our measurements using ground truth odometry instead of vehicular
wheel odometry, just to show how the Kalman Filter would work. To make it
fair, we made the values of our Q very close to the values of R, on the order of
between 10−5 and 10−7 to force the Kalman Filter to incorporate our measure-
ments as well as the ground truth measurements. If we had chosen reasonably
large values for Q, the algorithm would ignore our measurements and be ex-
tremely biased by the ground truth measurements because they are much more
accurate.

After implementing the Kalman filter, it was important to evaluate its effect on
performance compared to the base implementation without it. This was done
by calculating the translational drift several times and then averaged out, as
discussed above, with the Kalman filter included and without. This evaluation
was performed on the Malaga dataset.

18

Figure 19: Comparison of performance without Kalman Filter vs. with Kalman
Filter

Figure 20: Effect of decreasing the image resolution with Kalman filter

Figure 21: Drift over segment length with Kalman filter

19

Figure 22: Drift over segment length with Kalman filter

Figure 18 shows how the algorithm performed with the Kalman filter and
without it. Figure 19 shows the effect of decreasing the image resolution with the
Kalman filter, and figures 20 and 21 show the effect on drift over segment length
with the Kalman filter. It is hard to tell whether the implemented Kalman filter
improved the algorithm performance or not. This wasn’t an entirely unexpected
result given the amount of confidence we gave to our measurements. The RMSE,
average drift, and total drift all decreased slightly with the Kalman filter, but it
is unclear whether this is due to the filter or due to other factors. With the image
resolution, the drift did increase significantly, but it seemed to increase along
the same scale as the implementation without the Kalman filter. Similarly, for
the drift over segment length evaluation, the drift with the Kalman filter seemed
to increase along the same pattern as the drift without the Kalman filter.

8 Using more Malaga dataset frames

As we mentioned in our initial qualitative analysis, turns were particularly diffi-
cult for our algorithm to handle given that there was very little overlap between
frames taken one second apart as the car was turning. In the KITTI dataset,
each frame had an associated ground truth. However, for the Malaga dataset,
ground truths were given at most every second, and there were many stretches
where no ground truth locations were provided. Thus, when we built our ini-
tial system, we decided to use the first frame from every second of the Malaga
dataset so that we could quantitatively evaluate. However, we thought that
it might be interesting to try and use our algorithm with more of the Malaga

20

dataset points and qualitatively evaluate the resulting graphs. Our hypothesis
was that a higher frame rate would result in better pictures.

We used the first 207 frames from the Malaga dataset, which translated to
about 30 seconds. The first 130 frames are when the car is making the first left
turn and the remainder of the frames have the car driving in a straight line.
Fig. 23 shows the result of inputting all 207 frames into our system.

Figure 23: Malaga dataset when all frames per second were used.

The results are quite an improvement from the output graph of a turn with
only one frame per second. We can see the car making a left turn and then
maintaining a relatively straight path.

We also used frames 130 to 207 to see how more frames per second improved a
estimating straight line motion, the output of which can be seen in Fig. 24.

21

Figure 24: Straight portion of the Malaga dataset when all frames per second
were used.

This figure is quite beautiful and we can very clearly see the car moving in
a straight line as well as pretty definitive road boundaries. So, as expected, a
higher frame rate, which allows for more overlap from frame to frame, visibly
improves our system.

9 Challenges

One of the main problems we noticed while starting this project was the lack
of open source 3D stereo implementations of SLAM. While there were a few
of these open source projects, they were incredibly difficult to install on both
MacOS and Windows due to tricky dependencies such as g2opy, Pangolin, or
OpenCV. Although there were several 2D SLAM simulations, not many allowed
for testing on real world datasets. This lack of implementations partly inspired
us to implement a system ourselves without any starter code.

10 Conclusions and Future Work

In this project, we were successful in implementing a localization and mapping
algorithm and tracking our progress against the ground truth. One of the main
strengths of our system was that it worked really well with straight road se-
quences, as shown in the graphs of our evaluation. Furthermore, as expected, it
worked much better when the time between frames was smaller. The Kalman
Filter seemed to have a positive impact on the results by decreasing the drift,
but we can’t say conclusively that it would help given that we weren’t able to
implement it using vehicle wheel odometry as we had planned to. Another in-
teresting conclusion we could make from our data was that halving the image
resolution actually improved the results, as shown in both datasets.

22

However, our implementation also had a few flaws. One of the flaws is that
decreasing the image resolution to 1/4 and 1/8 significantly degraded the per-
formance to the point where the algorithm wouldn’t even run on 1/8 resolution
on any of the tested datasets, even with the Kalman Filter. However this flaw
may be attributed to using built in SIFT feature extraction functions so it
may be improved by using better feature extraction algorithms. Another flaw
was that the drift was extremely high compared to the drift recorded in pa-
pers that implemented similar algorithms. One reason for this may be that the
algorithms described in the papers included the feedback loop between local-
ization and mapping, thereby decreasing the uncertainty of both functionalities.

One small issue with our algorithm, which might have led to lower accuracies,
is the percentage of points that we considered ’inliers’ in the RANSAC algo-
rithm we implemented in findAffine3D.m. If we defined inliers to be a higher
percentage of the total points, this might make our algorithm more accurate.
Another aspect of our RANSAC implementation that we could have explored
is increasing the number of iterations. When we came across points that didn’t
have any inliers, we changed the threshold, but maybe we could have changed
the number of iterations as well and gotten potentially better results

For the future, we can try to implement a feedback loop between localization
and mapping to fully implement SLAM. This will involve remembering past
features somehow, and detecting when the car has made a loop, and therefore
is much more complicated than the current scope of the project.

Another area of future work would be to properly implement the Kalman Filter
the way we had planned, by using vehicle wheel odometry. We think it would
be very interesting to see whether or not the vehicle wheel odometry (which is
highly inaccurate in and of itself) will have a positive effect on our result.

11 Appendix 1: Description of submitted MAT-
LAB files

1. adjustMalagaGroundTruth.m

We have this function to correct for the fact that we are using the world
coordinates’ transform when we calculate our motion, however the world
coordinates are moving in the opposite direction from us. Thus, our mo-
tion is in the -x direction (as can be seen in all of the plots) instead of the
+x direction as the ground truth specifies. This function multiplies the x
coordinate of the ground truth by -1 so that motions we are comparing
have consistent directions.

2. calculateTranslationalDrifts.m

This function has all the quantitative evaluation code. Here, we calculate

23

the drifts in x, y, z directions, the total drift, average drift over the entire
sequence of frames, the RMSE of the drift in each direction, and the drift
over various segment lengths.

3. findAffine3D.m

This is the function that performs RANSAC to determine the 3D affine
transformation between two sets of world points.

4. getMalagaCovariances.m

Function to parse the Malaga ground truth text file to get covariance
matrices for each available ground truth timestamp.

5. getMalagaGroundTruths.m

Function to parse out ground truth locations from Malaga ground truth
text file.

6. kalmanFilter.m

This function can be called from mapMalaga.m instead of map.m. Like
map.m it will output a graph of the estimated location of the car and the
associated 3D points, however it uses the Malaga covariances in a Kalman
filter to improve on the estimated positions before plotting.

7. map.m This function is called from mapKitti.m and mapMalaga.m. It uses
the calculated transforms that are passed into it to determine the path of
the car, and does the plotting for the output graphs.

8. mapKitti.m

This function is the starting point for executing the system with frames
from the KITTI dataset. It calls stereo2transform.m for each consecu-
tive set of stereo frames to get the transform and then map.m, which gives
the output graphs.

9. mapMalaga.m

This function is the starting point for executing the system with frames
from the KITI dataset. It takes in one parameter which is a boolean toggle
for whether or not to use a Kalman filter. First, it calls stereo2transform.m.
Then, it the value of the parameter is 0, then this function calls map.m. If
the parameter is set to 1, this function calls kalmanFilter.m.

10. mapMalagaHighFrameRate.m

We made this function to experiment with using all the available frames
from the Malaga dataset to see how it would improve our localization and
mapping output.

11. plotMovingWorldPoints.m

This function enabled us to create plots like the right image in Fig. 5, as
a sanity check to make sure that our 3D point triangulation made sense.

24

12. stereo2transform.m

This function does most of the heavy lifting in our system. It does all
the steps from retrieving the images specified by a parameter from the
specified dataset to calling findAffine3D.m to get the tranform. It is this
transform that it returns to its caller – either mapMalaga.m or mapKITTI.m.

12 Appendix 2: Links to papers, datasets, and
used code

12.1 Papers

1. ”Large-Scale Direct SLAM with Stereo Cameras”
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7353631

2. ”ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo,
and RGB-D Cameras”
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7946260

3. ”Stereo Parallel Tracking and Mapping for robot localization”
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7353546&tag=1

4. ”A collection of outdoor robotic datasets with centimeter-accuracy ground
truth”
https://link.springer.com/content/pdf/10.1007%2Fs10514-009-9138-7.pdf

5. ”Vision meets robotics: The KITTI Dataset”
http://www.cvlibs.net/publications/Geiger2013IJRR.pdf

12.2 Datasets

1. Malaga campus RT dataset
http://www.mrpt.org/downloads/dataset2009/README campus RT.html

2. KITTI dataset
http://www.cvlibs.net/datasets/kitti/raw data.php?type=city
(Note: we used the first dataset on this page: 2011 09 26 drive 0001)

12.3 Code

All the functions that we used in building our system (listed in Section 4: System
Design and Implementation) are from the MATALB Computer Vision Toolbox
(https://www.mathworks.com/products/computer-vision.html).

The one exception is the function lla2flat, which is from the MATLAB
Aerospace Toolbox (https://www.mathworks.com/help/aerotbx/).

25

