Concurrency in Go
9/22/17



Outline

Mapreduce (15 mins)
Two synchronization mechanisms
Locks (15 mins)

Channels (20 mins)



Application: Word count

Hello my love. I love you, my dear. Goodbye.

l

hello: 1, my: 2, love: 2, 1: 1, dear: 1, goodbye: 1



Application: Word count

Locally: tokenize and put words in a hash map

How do you parallelize this?
Split document by half
Build two hash maps, one for each half

Merge the two hash maps (by key)



How do you do this in a distributed environment?




When in the Course of human events, it
becomes necessary for one people to dissolve
the political bands which have connected
them with another, and to assume, among the
Powers of the earth, the separate and equal
station to which the Laws of Nature and of
Nature's God entitle them, a decent respect
to the opinions of mankind requires that
they should declare the causes which impel

them to the separation.

Input document




When in the Course of human events, it

becomes necessary for one people to

dissolve the political bands which have

connected them with another, and to assume,

among the Powers of the earth, the separate

and equal station to which the Laws of

Nature and of Nature's God entitle them, a

decent respect to the opinions of mankind

requires that they should declare the causes

which impel them to the separation.

Partition




requires that they
should declare the
causes which impel them

. to the separation.
When in the Course of

human events, it
becomes necessary for Nature and of Nature's
one people to God entitle them, a

decent respect to the

opinions of mankind

dissolve the political =S 7 among the Powers of the
bands which have earth, the separate and
connected them with equal station to which

another, and to assume, the Laws of



requires: 1, that: 1,
they: 1, should: 1,
declare: 1, the: 1,

causes: 1, which: 1 ...
when: 1, in: 1,

the: 1, course: 1,
nature: 2, and: 1, of: 2,
god: 1, entitle: 1, them: 1,

of: 1, human: 1,
events: 1, it: 1

decent: 1, respect: 1,

mankind: 1, opinion: 1 ...

dissolve: 1, the: 2, among: 1, the: 2,

political: 1, bands: 1, powers: 1, of: 2, earth:
which: 1, have: 1, 1, separate: 1, equal:
connected: 1, them: 1 ... 1, and: 1 ...

Compute word counts locally



requires: 1, that: 1,
they: 1, should: 1,
declare: 1, the: 1,

causes: 1, which: 1 ...
when: 1, in: 1,

Now what...

How to merge results?

political: 1, bands: 1, powers: 1, of: 2, earth:
which: 1, have: 1, 1, separate: 1, equal:
connected: 1, them: 1 ... 1, and: 1 ...

Compute word counts locally



Merging results computed locally

Several options
Don’'t merge — requires additional computation for correct results

Send everything to one node — what if data is too big? Too slow...

Partition key space among nodes in cluster

1. Assign a key space to each node
2. Split local results by the key spaces
3. Fetch and merge results that correspond to the node’s key space



requires: 1, that: 1,
they: 1, should: 1,
declare: 1, the: 1,

causes: 1, which: 1 ...
when: 1, in: 1,

the: 1, course: 1,
nature: 2, and: 1, of: 2,
god: 1, entitle: 1, them: 1,

of: 1, human: 1,

events: 1, it: 1

decent: 1, respect: 1,

mankind: 1, opinion: 1 ...

dissolve: 1, the: 2, among: 1, the: 2,
political: 1, bands: 1, powers: 1, of: 2, earth:
which: 1, have: 1, 1, separate: 1, equal:

connected: 1, them: 1 ... 1, and: 1 ...



[a-e]
causes: 1, declare: 1,
requires: 1, should: 1,
[a-s] that: 1, they: 1, the: 1,
[t-z] 8
when: 1, the: 1, which: 1

course: 1, events: 1,

entitle: 1, and: 1,

decent: 1,

them: 1, respect: 1,

bands: 1, dissolve: 1, among: 1, and: 1,
connected: 1, equal: 1, earth: 1,
the: 1, separate: 1, the: 2,

them: 1, which: 1

Split local results by key space



All-to-all shuffle



[a-e]

[q-s] requires: 1, should: 1,

[t-z] respect: 1, separate: 1
when: 1, the: 1, that: 1,

1
they: 1, the: 1, which: 1,
them: 1, the: 2, the: 1,
1

them: 1, which: 1

bands: 1, dissolve: 1,

connected: 1, course: 1,

events: 1, among: 1, and: 1,
equal: 1, earth: 1, entitle: 1,
and: 1, decent: 1, causes: 1,

declare: 1

Note the duplicates...



requires: 1, should: 1,

respect: 1, separate: 1

when: 1, the: 4,
that: 1, they: 1,
which: 2, them: 2

bands: 1, dissolve: 1,

connected: 1, course: 1,

events: 1, among: 1, and: 2,
equal: 1, earth: 1,
entitle: 1, decent: 1,

causes: 1, declare: 1

Merge results received from other nodes



Mapreduce

Partition dataset into many chunks
Map stage: Each node processes one or more chunks locally

Reduce stage: Each node fetches and merges partial results from all other nodes



Mapreduce Interface

map (key, wvalue) -> list(<k’, v’'>)
Apply function to (key, value) pair

Outputs set of intermediate pairs

reduce (key, list<value>) -> <k’ , v’'>

Applies aggregation function to values

Outputs result



Mapreduce: Word count

map (key, wvalue):
// key = document name
// value = document contents
for each word w in value:

emit (w, 1)

reduce (key, values):
// key = the word

// values = number of occurrences of that word

count = sum(values)

emit (key, count)



Mapreduce: Word count

How much wood
would a woodchuck
chuck if a woodchuck
could chuck wood?

A woodchuck would
chuck a lot of wood
if a woodchuck
could chuck wood.

oy

much

(how, 1}, (much, 1),
(waood, 1), (would, 1),
(a, 1), (woodchuck, 1).

weood
weould

(chuck, 1), (if, 1), (a, 1),
(woodchuck, 1), (could, 1),
(chuck, 1), (wood, 1)

1
1
2
1
2
2

woodchuck
chuck
if

-k B

could

map combine

a

woodchuck

(a, 1), {(woodchuck, 1),
(would, 1), (chuck, 1).
(a, 1), (lot, 1), (of, 1),

would

chuck

(woaod, 1), (if, 1), (a. 1). =

{(woodchuck, 1), (could,
1) (chuck, 1), {(wood, 1)

of
weood
if

could

ERE R R R R R R

shuffle

a

woodchuck

reduce

20



Why is this hard?

Failure is common

Even if each machine is available 99.999% of the time, a datacenter with
100,000 machines still encounters failures (1-(1-p)”~n) = 63% of the time

Data skew causes unbalanced performance across cluster
Problems occur at scale

Hard to debug!



MapReduce ihadaap

| -
20'04 20'07 20'11 20'12
I A
Dryad
““““3 Cloud Dataflow
Spark’



Two synchronization mechanisms

Locks - limit access to a critical section

Channels - pass information across processes using a queue



Example: Bank account

Bob Bank Account

100
Read b =100

b=b+10
Write b =110 110




Example: Bank account

Bob Bank Account

100
Read b =100
b=b+10
Write b =110 110

110




What went wrong?

Changes to balance are not atomic

func Deposit(amount) {

read balance

balance += amount Critical section
write balance




Semaphores

Allows at most n concurrent accesses

Locks are a special case of
semaphores, withn = 1




. func (a *Account) CheckBalance() int {
Locks in Go a. lock. Lock()
defer a.lock.Unlock()

return a.balance
package account }

import "sync"
func (a *Account) Withdraw(v int) {

type Account struct { a.lock.Lock()
balance int defer a.lock.Unlock()
lock sync.Mutex a.balance -= v

} }

func NewAccount(init int) Account { func (a *Account) Deposit(v int) {
return Account{balance: init} a.lock.Lock()

} defer a.lock.Unlock()

a.balance += v



Read Write Locks in Go 2. Tock.RLock()

defer a.lock.RUnlock()

lock sync.RWMutex



Go channels

result := make(chan int, numWorkers)
In Go, channels and for i := 0; i < numWorkers; i++ {
goroutines are more go func() {

idiomatic than locks
result <- 1

30

}

for i := 0; i < numWorkers; i++ {
handleResult(<-result)

}

fmt.Println("Done!")



Go channels

Easy to express
asynchronous RPC

Awkward to express
this using locks

result := make(chan int, numServers)
for i := 0; i < numServers; i++ {
go func() {
resp :=
result <- resp
+O)
}

handleResponse(<-result)



Bank Account Code (using channels)

package account func (a *Account) CheckBalance() int {
// What goes Here?
type Account struct { }
// Fill in Here
} func (a *Account) Withdraw(v int) {
/] ???
func NewAccount(init int) Account { }
// Fill in Here
} func (a *Account) Deposit(v int) {
/] ???

}



Bank Account Code (using channels)

package account func (a *Account) CheckBalance() int {
type Account struct { }
balance chan int
} func (a *Account) Withdraw(v int) {
func NewAccount(init int) Account { }
a := Account{make(chan int, 1)}
a.balance <- init func (a *Account) Deposit(v int) {
return a

} }



Bank Account Code (using channels)

package account func (a *Account) CheckBalance() int {
bal := <-a.balance
type Account struct { a.balance <- bal
balance chan int return bal
} }
func NewAccount(init int) Account { func (a *Account) Withdraw(v int) {
a := Account{make(chan int, 1)}
a.balance <- init }
return a
} func (a *Account) Deposit(v int) {

}



Bank Account Code (using channels)

package account func (a *Account) CheckBalance() int {
bal := <-a.balance
type Account struct { a.balance <- bal
balance chan int return bal
} }
func NewAccount(init int) Account { func (a *Account) Withdraw(v int) {
a := Account{make(chan int, 1)} bal := <-a.balance
a.balance <- init a.balance <- (bal - v)
return a }
}

func (a *Account) Deposit(v int) {

}



Bank Account Code (using channels)

package account func (a *Account) CheckBalance() int {
bal := <-a.balance
type Account struct { a.balance <- bal
balance chan int return bal
} }
func NewAccount(init int) Account { func (a *Account) Withdraw(v int) {
a := Account{make(chan int, 1)} bal := <-a.balance
a.balance <- init a.balance <- (bal - v)
return a }
}

func (a *Account) Deposit(v int) {
bal := <-a.balance
a.balance <- (bal + v)



Exercise: Locks and semaphores (using channels)

type Lock struct {

}

func NewLock() Lock {

}
func (1 *Lock) Lock() {

}

func (1 *Lock) Unlock() {

}

type Semaphore struct {

}

func NewSemaphore(n int) Semaphore {

}

func (s *Semaphore) Acquire() {

}

func (s *Semaphore) Release() {

}



Exercise: Locks and semaphores (using channels)

type Lock struct {

}

ch chan bool

func NewLock() Lock {

}

1 := Lock{make(chan bool, 1)}
l.ch <- true
return 1

func (1 *Lock) Lock() {

}

<-1.ch

func (1 *Lock) Unlock() {

}

l.ch <- true

type Semaphore struct {
ch chan bool

}

func NewSemaphore(n int) Semaphore {
s := Semaphore{make(chan bool, n)}
for i :=0; i < n; i++ {
s.ch <- true
} return s

}

func (s *Semaphore) Acquire() {
<-s.ch

}

func (s *Semaphore) Release() {
s.ch <- true

}



Select statement

select allows a goroutine to wait on multiple channels at once

for {
select {
case money := <-dad:
buySnacks (money)
case money := <-mom:
buySnacks (money)
}



Select statement

select allows a goroutine to wait on multiple channels at once

for {
select {

case money := <-dad:
buySnacks (money)

case money := <-mom:
buySnacks (money)

case default:
starve()
time.Sleep(5 * time.Second)



Handle timeouts using select

result := make(chan int) func askServer(
result chan int,
timeout chan bool) {
// Asynchronously request an
// answer from server, timing
// out after X seconds
askServer(result, timeout)

// Wait on both channels

select {
case res := <-result: // Ask server
handleResult(res) go func() {
response := // ... send RPC
result <- response
} 10



Handle timeouts using select

result := make(chan int)
timeout := make(chan bool)

// Asynchronously request an
// answer from server, timing
// out after X seconds
askServer(result, timeout)

// Wait on both channels
select {
case res := <-result:
handleResult(res)
case <-timeout:
fmt.Println("Timeout!")

func askServer(

result chan int,
timeout chan bool) {

// Start timer

go func() {
time.Sleep(5 * time.Second)

timeout <- true

1O

// Ask server

go func() {
response := // ... send RPC

result <- response

10O



Assignment 1.2 is out, due 9/28



